3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of ovarian cancer (± neo-adjuvant chemotherapy effects) via ATR-FTIR spectroscopy: comparative analysis of blood and urine biofluids in a large patient cohort

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Ovarian cancer remains the most lethal gynaecological malignancy, as its timely detection at early stages remains elusive. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy of biofluids has been previously applied in pilot studies for ovarian cancer diagnosis, with promising results. Herein, these initial findings were further investigated by application of ATR-FTIR spectroscopy in a large patient cohort. Spectra were obtained by measurements of blood plasma and serum, as well as urine, from 116 patients with ovarian cancer and 307 patients with benign gynaecological conditions. A preliminary chemometric analysis revealed significant spectral differences in ovarian cancer patients without previous chemotherapy ( n = 71) and those who had received neo-adjuvant chemotherapy NACT ( n = 45), so these groups were compared separately with benign controls. Classification algorithms with blind predictive model validation demonstrated that serum was the best biofluid, achieving 76% sensitivity and 98% specificity for ovarian cancer detection, whereas urine exhibited poor performance. A drop in sensitivities for the NACT ovarian cancer group in plasma and serum indicates the potential of ATR-FTIR spectroscopy to identify chemotherapy-related spectral changes. Comparisons of regression coefficient plots for identification of biomarkers suggest that glycoproteins (such as CA125) are the main classifiers for ovarian cancer detection and responsible for smaller differences in spectra between NACT patients and benign controls. This study confirms the capacity of biofluids’ ATR-FTIR spectroscopy (mainly blood serum) to diagnose ovarian cancer with high accuracy and demonstrates its potential in monitoring response to chemotherapy, which is reported for the first time.

          ATR-FTIR spectroscopy of blood serum achieves good segregation of ovarian cancers from benign controls, with attenuation of differences following neo-adjuvant chemotherapy.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s00216-021-03472-8.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial ovarian cancer

            Epithelial ovarian cancer generally presents at an advanced stage and is the most common cause of gynaecological cancer death. Treatment requires expert multidisciplinary care. Population-based screening has been ineffective, but new approaches for early diagnosis and prevention that leverage molecular genomics are in development. Initial therapy includes surgery and adjuvant therapy. Epithelial ovarian cancer is composed of distinct histological subtypes with unique genomic characteristics, which are improving the precision and effectiveness of therapy, allowing discovery of predictors of response such as mutations in breast cancer susceptibility genes BRCA1 and BRCA2, and homologous recombination deficiency for DNA damage response pathway inhibitors or resistance (cyclin E1). Rapidly evolving techniques to measure genomic changes in tumour and blood allow for assessment of sensitivity and emergence of resistance to therapy, and might be accurate indicators of residual disease. Recurrence is usually incurable, and patient symptom control and quality of life are key considerations at this stage. Treatments for recurrence have to be designed from a patient's perspective and incorporate meaningful measures of benefit. Urgent progress is needed to develop evidence and consensus-based treatment guidelines for each subgroup, and requires close international cooperation in conducting clinical trials through academic research groups such as the Gynecologic Cancer Intergroup.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using Fourier transform IR spectroscopy to analyze biological materials.

              IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing.
                Bookmark

                Author and article information

                Contributors
                flm13@biocel.uk
                Journal
                Anal Bioanal Chem
                Anal Bioanal Chem
                Analytical and Bioanalytical Chemistry
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1618-2642
                1618-2650
                1 July 2021
                1 July 2021
                2021
                : 413
                : 20
                : 5095-5107
                Affiliations
                [1 ]GRID grid.440181.8, ISNI 0000 0004 0456 4815, Department of Obstetrics and Gynaecology, , Lancashire Teaching Hospitals NHS Foundation Trust, ; Preston, PR2 9HT UK
                [2 ]GRID grid.7943.9, ISNI 0000 0001 2167 3843, School of Pharmacy and Biomedical Sciences, , University of Central Lancashire, ; Preston, PR1 2HE UK
                [3 ]Biocel Ltd, Hull, HU10 7TS UK
                Article
                3472
                10.1007/s00216-021-03472-8
                8405472
                34195877
                6c978395-acc3-49a2-8e8b-c40d39f1877b
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 29 April 2021
                : 6 June 2021
                : 9 June 2021
                Funding
                Funded by: Rosemere Cancer Foundation
                Categories
                Research Paper
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2021

                Analytical chemistry
                ovarian cancer,chemotherapy,biofluids,liquid biopsies,atr-ftir spectroscopy,spectroscopy

                Comments

                Comment on this article