2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Insights from Soil Microorganisms for Sustainable Double Rice-Cropping System with 37-Year Manure Fertilization

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-term intensive use of mineral fertilizers in double rice-cropping systems has led to soil acidification and soil degradation. Manure fertilization was suggested as an alternative strategy to mitigate soil degradation. However, the effects of long-term mineral and manure fertilization on rice grain yield, yield stability, soil organic carbon (SOC) content, soil total nitrogen (TN) content, and the underlying mechanisms are unclear. Based on a long-term experiment established in 1981 in southern China, we compared four treatments: no fertilizer application (Control); application of nitrogen–phosphorus–potassium (NPK); NPK plus green manure in early rice (M1); and M1 plus farmyard manure in late rice and rice straw return in winter (M2). Our results showed that 37 years of NPK, M1, and M2 significantly increased rice grain yield by 54%, 46%, and 72%, and yield stability by 22%, 17%, and 9%, respectively. M1 and M2 significantly increased SOC content by 39% and 23% compared to Control, respectively, whereas there was no difference between Control and NPK. Regarding soil TN content, it was significantly increased by 8%, 46%, and 20% by NPK, M1, and M2, respectively. In addition, M2 significantly increased bacterial OTU richness by 68%, Chao1 index by 79%, and altered the bacterial community composition. Changes in soil nutrient availability and bacterial Simpson index were positively correlated with the changes in grain yield, while shifts in bacterial community were closely related to yield stability. This study provides pioneer comprehensive assessments of the simultaneous responses of grain yield, yield stability, SOC and TN content, nutrient availability, and bacterial community composition to long-term mineral and manure fertilization in a double rice-cropping system. Altogether, this study spanning nearly four decades provides new perspectives for developing sustainable yet intensive rice cultivation to meet growing global demands.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FLASH: fast length adjustment of short reads to improve genome assemblies.

            Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              UPARSE: highly accurate OTU sequences from microbial amplicon reads.

              Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
                Bookmark

                Author and article information

                Contributors
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                January 2023
                January 15 2023
                : 13
                : 1
                : 261
                Article
                10.3390/agronomy13010261
                6c89e203-4299-478c-a621-c400b76c87d2
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article