13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

          We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ONCOLYTIC VIROTHERAPY

            Oncolytic virotherapy is an emerging treatment modality which uses replication competent viruses to destroy cancers. Advances in the past two years include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, new strategies to maximize the immunotherapeutic potential of oncolytic virotherapy, and clinical confirmation of a critical viremic thereshold for vascular delivery and intratumoral virus replication. The primary clinical milestone was completion of accrual in a phase III trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Challenges for the field are to select ‘winners’ from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders of magnitude higher yields compared to established vaccine manufacturing processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor delivery of macromolecular drugs based on the EPR effect.

              Enhanced permeability and retention (EPR) effect is the physiology-based principal mechanism of tumor accumulation of large molecules and small particles. This specific issue of Advanced Drug Delivery Reviews is summing up multiple data on the EPR effect-based drug design and clinical outcome. In this commentary, the role of the EPR effect in the intratumoral delivery of protein and peptide drugs, macromolecular drugs and drug-loaded long-circulating pharmaceutical nanocarriers is briefly discussed together with some additional opportunities for drug delivery arising from the initial EPR effect-mediated accumulation of drug-containing macromolecular systems in tumors. Copyright © 2010 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncolytic Virother
                Oncolytic Virother
                Oncolytic Virotherapy
                Oncolytic Virotherapy
                Dove Medical Press
                2253-1572
                2017
                08 November 2017
                : 6
                : 39-49
                Affiliations
                [1 ]Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
                [2 ]Department of Biomedical Engineering, Arizona State University, Tempe
                [3 ]Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
                [4 ]Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
                Author notes
                Correspondence: Mitesh J Borad, Division of Hematology Oncology, Mayo Clinic, 13400 Shea Boulevard, Scottsdale, AZ 85259, USA, Tel +1 480 342 2495, Fax +1 480 341 4675, Email Borad.Mitesh@ 123456mayo.edu
                Article
                ov-6-039
                10.2147/OV.S145262
                5687448
                29184854
                6be29c74-94b0-4afa-86e2-eb199ca877aa
                © 2017 Yokoda et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                oncolytic viruses,oncolytic virotherapy,drug delivery systems,tumor microenvironment

                Comments

                Comment on this article