13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antisense binding enhanced by tertiary interactions: binding of phosphorothioate and N3'-->P5' phosphoramidate hexanucleotides to the catalytic core of a group I ribozyme from the mammalian pathogen Pneumocystis carinii.

      Biochemistry
      Animals, Binding Sites, Catalysis, Exons, Humans, Mice, Nucleic Acid Conformation, Nucleic Acid Heteroduplexes, chemistry, metabolism, Oligodeoxyribonucleotides, Oligonucleotides, Antisense, Pneumocystis, enzymology, RNA, Catalytic, Thermodynamics, Thionucleotides

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pneumocystis carinii is the most common lethal opportunistic pathogen infecting Acquired Immune Deficiency Syndrome (AIDS) patients, and more effective therapeutics for it are needed. P. carinii, but not humans, contain RNA self-splicing group I introns, so these functionally important RNAs are potential anti-fungal targets. In vitro, d(ATGACT), which mimics the 3' end of the 5' exon of a conserved ribosomal RNA group I intron from mouse-derived Pneumocystis carinii binds to a ribozyme that is a truncated form of this intron. The binding is about 30,000 times tighter than expected for simple base-pairing because binding is enhanced by tertiary interactions. Here we report the effects of modifying the phosphodiester backbone of d(ATGACT) with phosphorothioate and of d(ATGAC)rU with N3'-->P5' phosphoramidate linkages. The enhancement of binding by tertiary interactions is not substantially decreased, and in some cases is increased when single Rp and Sp phosphorothioate substitutions are made, although overall binding is weaker by up to 6-fold. A mixture of 5' exon mimic isomers that each contain five phosphorothioate linkages binds to the ribozyme at least 14-fold less tightly than the corresponding phosphodiester mimic. In contrast, the 5' exon mimic with five internal N3'-->P5' phosphoramidate linkages binds 4-fold more tightly than d(ATGAC)rU. This increased binding is largely due to more favorable base-pairing, but tertiary interactions still enhance binding by more than 2, 000-fold. These results indicate that chemically modified, nuclease stable 5' exon mimics can act as antisense agents with binding enhanced by tertiary interactions (BETI). This strategy permits design of short antisense agents with high specificity.

          Related collections

          Author and article information

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content156

          Cited by2