32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimation of pairwise sequence similarity of mammalian enhancers with word neighbourhood counts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motivation: The identity of cells and tissues is to a large degree governed by transcriptional regulation. A major part is accomplished by the combinatorial binding of transcription factors at regulatory sequences, such as enhancers. Even though binding of transcription factors is sequence-specific, estimating the sequence similarity of two functionally similar enhancers is very difficult. However, a similarity measure for regulatory sequences is crucial to detect and understand functional similarities between two enhancers and will facilitate large-scale analyses like clustering, prediction and classification of genome-wide datasets.

          Results: We present the standardized alignment-free sequence similarity measure N2, a flexible framework that is defined for word neighbourhoods. We explore the usefulness of adding reverse complement words as well as words including mismatches into the neighbourhood. On simulated enhancer sequences as well as functional enhancers in mouse development, N2 is shown to outperform previous alignment-free measures. N2 is flexible, faster than competing methods and less susceptible to single sequence noise and the occurrence of repetitive sequences. Experiments on the mouse enhancers reveal that enhancers active in different tissues can be separated by pairwise comparison using N2.

          Conclusion: N2 represents an improvement over previous alignment-free similarity measures without compromising speed, which makes it a good candidate for large-scale sequence comparison of regulatory sequences.

          Availability: The software is part of the open-source C++ library SeqAn (www.seqan.de) and a compiled version can be downloaded at http://www.seqan.de/projects/alf.html

          Contact: goeke@ 123456molgen.mpg.de ; vingron@ 123456molgen.mpg.de

          Supplementary information: Supplementary data are available at Bioinformatics online.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          Identification of common molecular subsequences.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ChIP-seq accurately predicts tissue-specific activity of enhancers.

            A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CpG islands in vertebrate genomes.

              Although vertebrate DNA is generally depleted in the dinucleotide CpG, it has recently been shown that some vertebrate genes contain CpG islands, regions of DNA with a high G+C content and a high frequency of CpG dinucleotides relative to the bulk genome. In this study, a large number of sequences of vertebrate genes were screened for the presence of CpG islands. Each CpG island was then analysed in terms of length, nucleotide composition, frequency of CpG dinucleotides, and location relative to the transcription unit of the associated gene. CpG islands were associated with the 5' ends of all housekeeping genes and many tissue-specific genes, and with the 3' ends of some tissue-specific genes. A few genes contained both 5' and 3' CpG islands, separated by several thousand base-pairs of CpG-depleted DNA. The 5' CpG islands extended through 5'-flanking DNA, exons and introns, whereas most of the 3' CpG islands appeared to be associated with exons. CpG islands were generally found in the same position relative to the transcription unit of equivalent genes in different species, with some notable exceptions. The locations of G/C boxes, composed of the sequence GGGCGG or its reverse complement CCGCCC, were investigated relative to the location of CpG islands. G/C boxes were found to be rare in CpG-depleted DNA and plentiful in CpG islands, where they occurred in 3' CpG islands, as well as in 5' CpG islands associated with tissue-specific and housekeeping genes. G/C boxes were located both upstream and downstream from the transcription start site of genes with 5' CpG islands. Thus, G/C boxes appeared to be a feature of CpG islands in general, rather than a feature of the promoter region of housekeeping genes. Two theories for the maintenance of a high frequency of CpG dinucleotides in CpG islands were tested: that CpG islands in methylated genomes are maintained, despite a tendency for 5mCpG to mutate by deamination to TpG+CpA, by the structural stability of a high G+C content alone, and that CpG islands associated with exons result from some selective importance of the arginine codon CGX. Neither of these theories could account for the distribution of CpG dinucleotides in the sequences analysed. Possible functions of CpG islands in transcriptional and post-transcriptional regulation of gene expression were discussed, and were related to theories for the maintenance of CpG islands as "methylation-free zones" in germline DNA.
                Bookmark

                Author and article information

                Journal
                Bioinformatics
                Bioinformatics
                bioinformatics
                bioinfo
                Bioinformatics
                Oxford University Press
                1367-4803
                1367-4811
                1 March 2012
                12 January 2012
                12 January 2012
                : 28
                : 5
                : 656-663
                Affiliations
                1Department for Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany and 2Ray and Stephanie Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
                Author notes
                *To whom correspondence should be addressed.

                Associate Editor: Martin Bishop

                Article
                bts028
                10.1093/bioinformatics/bts028
                3289921
                22247280
                6b71ee38-c34a-499c-a18c-22f2e123bf00
                © The Author(s) 2012. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 July 2011
                : 9 January 2012
                : 10 January 2012
                Page count
                Pages: 8
                Categories
                Original Papers
                Sequence Analysis

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article