0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dipsacoside B Exerts a Beneficial Effect on Brain Injury in the Ischemic Stroke Rat through Inhibition of Mitochondrial E3 Ubiquitin Ligase 1

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Upregulation of mitochondrial E3 ubiquitin ligase 1 (Mul1) contributes to brain injury in ischemic stroke due to disturbance of mitochondrial dynamics, and bioinformatics analysis predicts that Mul1 is a potential target of Dipsacoside B.

          Objective:

          The aim of the study was to explore whether Dipsacoside B can exert a beneficial effect on brain injury in the ischemic stroke rat via targeting Mul1.

          Methods:

          The SD rat brains or PC12 cells were subjected to 2 h-ischemia or 8 h-hypoxia plus 24 h-reperfusion or 24 h-reoxygenation to establish the ischemic stroke rat model in vivo or in vitro, which were treated with Dipsacoside B at different dosages. The brain or PC12 cell injury, relevant protein levels and mitochondrial functions were measured by methods of biochemistry, flow cytometry or Western blot.

          Results:

          The neurological dysfunction and brain injury (such as infarction and apoptosis) observed in the ischemic stroke rats were accompanied by increases in Mul1 and dynamin-related protein 1 (Drp1) levels along with decreases in mitofusin 2 (Mfn2) level and ATP production. These effects were attenuated by Dipsacoside B. Consistently, cell injury (necroptosis and apoptosis) occurred in the PC12 cells exposed to hypoxia concomitant with the upregulation of Mul1 and Drp1 along with downregulation of Mfn2 and mitochondrial functions (such as increases in reactive oxygen species production and mitochondrial fission and decreases in mitochondrial membrane potential and ATP production).These phenomena were reversed in the presence of Dipsacoside B.

          Conclusion:

          Dipsacoside B can protect the rat brain against ischemic injury via inhibition of Mul1 due to the improvement of mitochondrial function.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019

          Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial fission, fusion, and stress.

            Mitochondrial fission and fusion play critical roles in maintaining functional mitochondria when cells experience metabolic or environmental stresses. Fusion helps mitigate stress by mixing the contents of partially damaged mitochondria as a form of complementation. Fission is needed to create new mitochondria, but it also contributes to quality control by enabling the removal of damaged mitochondria and can facilitate apoptosis during high levels of cellular stress. Disruptions in these processes affect normal development, and they have been implicated in neurodegenerative diseases, such as Parkinson's.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death

              Mixed lineage kinase domain-like protein (MLKL) was identified to function downstream of receptor interacting protein 3 (RIP3) in tumor necrosis factor-α (TNF)-induced necrosis (also called necroptosis). However, how MLKL functions to mediate necroptosis is unknown. By reconstitution of MLKL function in MLKL-knockout cells, we showed that the N-terminus of MLKL is required for its function in necroptosis. The oligomerization of MLKL in TNF-treated cells is essential for necroptosis, as artificially forcing MLKL together by using the hormone-binding domain (HBD*) triggers necroptosis. Notably, forcing together the N-terminal domain (ND) but not the C-terminal kinase domain of MLKL causes necroptosis. Further deletion analysis showed that the four-α-helix bundle of MLKL (1-130 amino acids) is sufficient to trigger necroptosis. Both the HBD*-mediated and TNF-induced complexes of MLKL(ND) or MLKL are tetramers, and translocation of these complexes to lipid rafts of the plasma membrane precedes cell death. The homo-oligomerization is required for MLKL translocation and the signal sequence for plasma membrane location is located in the junction of the first and second α-helices of MLKL. The plasma membrane translocation of MLKL or MLKL(ND) leads to sodium influx, and depletion of sodium from the cell culture medium inhibits necroptosis. All of the above phenomena were not seen in apoptosis. Thus, the MLKL oligomerization leads to translocation of MLKL to lipid rafts of plasma membrane, and the plasma membrane MLKL complex acts either by itself or via other proteins to increase the sodium influx, which increases osmotic pressure, eventually leading to membrane rupture.
                Bookmark

                Author and article information

                Journal
                CNS & Neurological Disorders - Drug Targets
                CNSNDDT
                Bentham Science Publishers Ltd.
                18715273
                October 2022
                October 2022
                : 21
                : 8
                : 693-703
                Affiliations
                [1 ]Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
                [2 ]Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China | Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
                [3 ]Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
                [4 ]Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013,China
                Article
                10.2174/1871527320666211118143554
                6b463374-9717-4f6b-bc84-d7bc181774eb
                © 2022
                History

                Comments

                Comment on this article