126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Science PhD Career Preferences: Levels, Changes, and Advisor Encouragement

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Even though academic research is often viewed as the preferred career path for PhD trained scientists, most U.S. graduates enter careers in industry, government, or “alternative careers.” There has been a growing concern that these career patterns reflect fundamental imbalances between the supply of scientists seeking academic positions and the availability of such positions. However, while government statistics provide insights into realized career transitions, there is little systematic data on scientists' career preferences and thus on the degree to which there is a mismatch between observed career paths and scientists' preferences. Moreover, we lack systematic evidence whether career preferences adjust over the course of the PhD training and to what extent advisors exacerbate imbalances by encouraging their students to pursue academic positions. Based on a national survey of PhD students at tier-one U.S. institutions, we provide insights into the career preferences of junior scientists across the life sciences, physics, and chemistry. We also show that the attractiveness of academic careers decreases significantly over the course of the PhD program, despite the fact that advisors strongly encourage academic careers over non-academic careers. Our data provide an empirical basis for common concerns regarding labor market imbalances. Our results also suggest the need for mechanisms that provide PhD applicants with information that allows them to carefully weigh the costs and benefits of pursuing a PhD, as well as for mechanisms that complement the job market advice advisors give to their current students.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Dicke Quantum Phase Transition with a Superfluid Gas in an Optical Cavity

            A phase transition describes the sudden change of state in a physical system, such as the transition between a fluid and a solid. Quantum gases provide the opportunity to establish a direct link between experiment and generic models which capture the underlying physics. A fundamental concept to describe the collective matter-light interaction is the Dicke model which has been predicted to show an intriguing quantum phase transition. Here we realize the Dicke quantum phase transition in an open system formed by a Bose-Einstein condensate coupled to an optical cavity, and observe the emergence of a self-organized supersolid phase. The phase transition is driven by infinitely long-ranged interactions between the condensed atoms. These are induced by two-photon processes involving the cavity mode and a pump field. We show that the phase transition is described by the Dicke Hamiltonian, including counter-rotating coupling terms, and that the supersolid phase is associated with a spontaneously broken spatial symmetry. The boundary of the phase transition is mapped out in quantitative agreement with the Dicke model. The work opens the field of quantum gases with long-ranged interactions, and provides access to novel quantum phases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The meaning of translational research and why it matters.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                2 May 2012
                : 7
                : 5
                : e36307
                Affiliations
                [1 ]Georgia Institute of Technology, Atlanta, Georgia, United States of America
                [2 ]University of North Carolina, Chapel Hill, North Carolina, United States of America
                Northwestern University, United States of America
                Author notes

                Conceived and designed the experiments: MR HS. Performed the experiments: MR HS. Analyzed the data: HS. Wrote the paper: MR HS.

                Article
                PONE-D-12-04251
                10.1371/journal.pone.0036307
                3342243
                22567149
                6b28c40e-38ba-4785-931d-624481bfec50
                Sauermann, Roach. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 February 2012
                : 3 April 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Science Policy
                Research Laboratories
                Company Laboratories
                Government Laboratories
                University Laboratories
                Science Education
                Science Policy and Economics
                Science and Technology Workforce
                Careers in Research
                Social and Behavioral Sciences
                Science Education
                Training
                Job Training
                Universities

                Uncategorized
                Uncategorized

                Comments

                Comment on this article