11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Numerical modelling of landscape and sediment flux response to precipitation rate change

      , , ,
      Earth Surface Dynamics
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> Laboratory-scale experiments of erosion have demonstrated that landscapes have a natural (or intrinsic) response time to a change in precipitation rate. In the last few decades there has been growth in the development of numerical models that attempt to capture landscape evolution over long timescales. However, there is still an uncertainty regarding the validity of the basic assumptions of mass transport that are made in deriving these models. In this contribution we therefore return to a principal assumption of sediment transport within the mass balance for surface processes; we explore the sensitivity of the classic end-member landscape evolution models and the sediment fluxes they produce to a change in precipitation rates. One end-member model takes the mathematical form of a kinetic wave equation and is known as the stream power model, in which sediment is assumed to be transported immediately out of the model domain. The second end-member model is the transport model and it takes the form of a diffusion equation, assuming that the sediment flux is a function of the water flux and slope. We find that both of these end-member models have a response time that has a proportionality to the precipitation rate that follows a negative power law. However, for the stream power model the exponent on the water flux term must be less than one, and for the transport model the exponent must be greater than one, in order to match the observed concavity of natural systems. This difference in exponent means that the transport model generally responds more rapidly to an increase in precipitation rates, on the order of 10<sup>5</sup> years for post-perturbation sediment fluxes to return to within 50<span class="thinspace"></span>% of their initial values, for theoretical landscapes with a scale of 100×100<span class="thinspace"></span>km. Additionally from the same starting conditions, the amplitude of the sediment flux perturbation in the transport model is greater, with much larger sensitivity to catchment size. An important finding is that both models respond more quickly to a wetting event than a drying event, and we argue that this asymmetry in response time has significant implications for depositional stratigraphies. Finally, we evaluate the extent to which these constraints on response times and sediment fluxes from simple models help us understand the geological record of landscape response to rapid environmental changes in the past, such as the Paleocene–Eocene thermal maximum (PETM). In the Spanish Pyrenees, for instance, a relatively rapid (10 to 50<span class="thinspace"></span>kyr) duration of the deposition of gravel is observed for a climatic shift that is thought to be towards increased precipitation rates. We suggest that the rapid response observed is more easily explained through a diffusive transport model because (1) the model has a faster response time, which is consistent with the documented stratigraphic data, (2) there is a high-amplitude spike in sediment flux, and (3) the assumption of instantaneous transport is difficult to justify for the transport of large grain sizes as an alluvial bedload. Consequently, while these end-member models do not reproduce all the complexity of processes seen in real landscapes, we argue that variations in long-term erosional dynamics within source catchments can fundamentally control when, how, and where sedimentary archives can record past environmental change.</p>

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found

          Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the duration of the Paleocene-Eocene thermal maximum (PETM)

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Implications of sediment-flux-dependent river incision models for landscape evolution

                Bookmark

                Author and article information

                Journal
                Earth Surface Dynamics
                Earth Surf. Dynam.
                Copernicus GmbH
                2196-632X
                2018
                February 15 2018
                : 6
                : 1
                : 77-99
                Article
                10.5194/esurf-6-77-2018
                6ae7c5a1-1320-4293-87b4-16bc49244cd5
                © 2018

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content26

                Cited by7

                Most referenced authors523