42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Individualized Genetic Barrier Predicts Treatment Response in a Large Cohort of HIV-1 Infected Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.

          Author Summary

          Drug resistance remains a challenge in the management of HIV-infected patients. The accumulation of mutations during ongoing viral replication is the origin of drug resistance development. Understanding this evolutionary process in a quantitative manner is an important prerequisite for minimizing the risk of resistance development and for the optimal selection of drug combinations for each individual patient. We present probabilistic graphical models for describing the evolution of drug resistance, and we derive the individualized genetic barrier (IGB), a single quantity summarizing the genetic potential of the virus for evolutionary escape from selective drug pressure. The predictive power of the IGB is demonstrated on a large well characterized clinical cohort of HIV patients and compared to classical predictors.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel.

          Recent data regarding the consequences of untreated human immunodeficiency virus (HIV) infection and the expansion of treatment choices for antiretroviral-naive and antiretroviral-experienced patients warrant an update of the International AIDS Society-USA guidelines for the use of antiretroviral therapy in adults with HIV infection. To provide updated recommendations for management of HIV-infected adults, using antiretroviral drugs and laboratory monitoring tools available in the international, developed-world setting. This report provides guidelines for when to initiate antiretroviral therapy, selection of appropriate initial regimens, patient monitoring, when to change therapy, and what regimens to use when changing. A panel with expertise in HIV research and clinical care reviewed relevant data published or presented at selected scientific conferences since the last panel report through April 2010. Data were identified through a PubMed search, review of scientific conference abstracts, and requests to antiretroviral drug manufacturers for updated clinical trials and adverse event data. New evidence was reviewed by the panel. Recommendations were drafted by section writing committees and reviewed and edited by the entire panel. The quality and strength of the evidence were rated and recommendations were made by full panel consensus. Patient readiness for treatment should be confirmed before initiation of antiretroviral treatment. Therapy is recommended for asymptomatic patients with a CD4 cell count 500/microL. Components of the initial and subsequent regimens must be individualized, particularly in the context of concurrent conditions. Patients receiving antiretroviral treatment should be monitored regularly; treatment failure should be detected and managed early, with the goal of therapy, even in heavily pretreated patients, being HIV-1 RNA suppression below commercially available assay quantification limits.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cohort profile: the Swiss HIV Cohort study.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiretroviral drug resistance testing in adult HIV-1 infection: 2008 recommendations of an International AIDS Society-USA panel.

              Resistance to antiretroviral drugs remains an important limitation to successful human immunodeficiency virus type 1 (HIV-1) therapy. Resistance testing can improve treatment outcomes for infected individuals. The availability of new drugs from various classes, standardization of resistance assays, and the development of viral tropism tests necessitate new guidelines for resistance testing. The International AIDS Society-USA convened a panel of physicians and scientists with expertise in drug-resistant HIV-1, drug management, and patient care to review recently published data and presentations at scientific conferences and to provide updated recommendations. Whenever possible, resistance testing is recommended at the time of HIV infection diagnosis as part of the initial comprehensive patient assessment, as well as in all cases of virologic failure. Tropism testing is recommended whenever the use of chemokine receptor 5 antagonists is contemplated. As the roll out of antiretroviral therapy continues in developing countries, drug resistance monitoring for both subtype B and non-subtype B strains of HIV will become increasingly important.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                August 2013
                August 2013
                29 August 2013
                : 9
                : 8
                : e1003203
                Affiliations
                [1 ]Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
                [2 ]SIB Swiss Institute of Bioinformatics, Basel, Switzerland
                [3 ]Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
                [4 ]Clinic for Infectious Diseases, Bern University Hospital, Bern, Switzerland
                [5 ]Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
                [6 ]Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
                [7 ]Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland
                [8 ]Division of Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
                [9 ]Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland
                [10 ]Laboratory of Virology, University Hospital Geneva, Geneva, Switzerland
                [11 ]Swiss National Center for Retroviruses, Institute of Medical Virology, University of Zurich, Zurich, Switzerland
                [12 ]Institute for Medical Microbiology, University of Basel, Basel, Switzerland
                [13 ]Division of Immunology and Allergy, Centre Hospitalier Universitaire Vadois, Lausanne, Switzerland
                Katholieke Universiteit Leuven, Belgium
                Author notes

                I have read the journal's policy and have the following potential conflicts: HFG has been a medical adviser and/or consultant for GlaxoSmithKline, Abbott, Novartis, Boehringer Ingelheim, Gilead Sciences, Roche, Merck Sharp & Dohme, Tibotec, and Bristol-Myers Squibb, and has received unrestricted research, travel, and educational grants from Roche, Abbott, Bristol-Myers Squibb, Gilead Sciences, GlaxoSmithKline, ViiV Healthcare, Tibotec and Merck Sharp & Dohme (all money sent to institution). SY has participated in advisory board of Bristol-Meyers Squibb, has received travel grants from ViiV and Merck Sharp & Dohme, and has been paid for development of educational presentations by Gilead. VvW was supported by a fellowship of the Novartis Foundation (formerly Ciba-Geigy Jubilee Foundation). HF's institution has received money from participation in advisory boards of ViiVHealthcare, Bristol-Myers Squibb, Gilead, Merck Sharp & Dome, Boehringer-Ingelheim, and Janssen, and has received unrestricted educational or research grants from Abbott, ViiV Healthcare, BMS, Roche, Gilead, Merck Sharp & Dome, and Janssen-Cilag. MB has been paid by ViiV, Gilead, and MSD for serving on advisory boards and his institution has received educational and research grants from ViiV, Boehringer, Gilead, Abbott, and Bristol-Meyers Squibb. MC has received travel grants from Abbott, Boehringer-Ingelheim, Gilead, and MSD. PV has been paid for consulting Bristol-Meyers Sqibb, Merck Sharp & Dohme, and Janssen, and for lecturing by Janssen and Gilead. EB has been paid by Boehringer Ingelheim, Gilead, Merck Sharp & Dohme, and ViiV for consultancy and board membership, and his institution has been paid by Janssen, Gilead, Abbott, Bristol-Meyers Squibb, and Merck Sharp & Dohme for board membership and consultancy.

                Conceived and designed the experiments: NB PK VvW HFG. Performed the experiments: VvW HF MB BH MC PV EB SY JB TK CC HFG. Analyzed the data: NB HM HS PK VvW HFG. Contributed reagents/materials/analysis tools: VvW HF MB BH MC PV EB SY JB TK CC HFG. Wrote the paper: NB HM HS PK VvW HFG.

                ¶ Membership of the Swiss HIV Cohort Study is provided in the Acknowledgments.

                Article
                PCOMPBIOL-D-12-01941
                10.1371/journal.pcbi.1003203
                3757085
                24009493
                c06a78e6-31f8-4d61-8a37-c781d2ced0cd
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 December 2012
                : 14 July 2013
                Page count
                Pages: 11
                Funding
                This work was supported by the Swiss HIV Cohort Study [grant numbers 470, 528, 569, 629]; the Swiss HIV Cohort Study Research Foundation; the Swiss National Science Foundation [grant numbers 33CS30-134277, 3247B0-112594 to HFG and SY, 324730-130865 to HFG, CR32I2_127017 to NB and HFG]; the Collaborative HIV and Anti-HIV Drug Resistance Network [grant number 223131] of the European Community's Seventh Framework Programme [grant number FP7/2007–2013]; a research grant of the Union Bank of Switzerland, in the name of a donor to HFG; an unrestricted research grant from Gilead, Switzerland to the SHCS Research Foundation and by the University of Zurich's Clinical Research Priority Program (CRPP) “Viral infectious diseases: Zurich Primary HIV Infection Study” (to HFG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article