8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties.

      Nature materials
      Alloys, chemical synthesis, chemistry, Cobalt, Compressive Strength, Elasticity, Magnetics, Materials Testing, Motion, Stress, Mechanical, Temperature, Tensile Strength

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bulk metallic glasses--formed by supercooling the liquid state of certain metallic alloys--have potentially superior mechanical properties to crystalline materials. Here, we report a Co(43)Fe(20)Ta(5.5)B(31.5) glassy alloy exhibiting ultrahigh fracture strength of 5,185 MPa, high Young's modulus of 268 GPa, high specific strength of 6.0 x 10(5) Nm kg(-1) and high specific Young's modulus of 31 x 10(6) Nm kg(-1). The strength, specific strength and specific Young's modulus are higher than previous values reported for any bulk crystalline or glassy alloys. Excellent formability is manifested by large tensile elongation of 1,400% and large reduction ratio in thickness above 90% in the supercooled liquid region. The ultrahigh-strength alloy also exhibited soft magnetic properties with extremely high permeability of 550,000. This alloy is promising as a new ultrahigh-strength material with good deformability and soft magnetic properties.

          Related collections

          Author and article information

          Comments

          Comment on this article