0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interspecies Interactions Between Streptococcus Mutans and Streptococcus Agalactiae in vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptococcus mutans is an oral species closely associated with dental caries. As an early oral colonizer, S. mutans utilizes interspecies coaggregation to promote the colonization of subsequent species and affect polymicrobial pathogenesis. Previous studies have confirmed several adhering partner species of S. mutans, including Candida albicans and Fusobacterium nucleatum. In this study, we discovered new intergeneric co-adherence between S. mutans and the saliva isolate Streptococcus agalactiae (GBS-SI101). Research shows that GBS typically colonizes the human gastrointestinal and vaginal tracts. It is responsible for adverse pregnancy outcomes and life-threatening infections in neonates and immunocompromised people. Our results revealed that GtfB and GtfC of S. mutans, which contributed to extracellular polysaccharide synthesis, promoted coaggregation of S. mutans with GBS-SI101. In addition, oral streptococci, including Streptococcus sanguinis, Streptococcus gordonii and S. mutans, barely inhibited the growth of GBS-SI101. This study indicated that S. mutans could help GBS integrate into the Streptococcus-associated oral polymicrobial community and become a resident species in the oral cavity, increasing the risk of oral infections.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Oral multispecies biofilm development and the key role of cell-cell distance.

          Growth of oral bacteria in situ requires adhesion to a surface because the constant flow of host secretions thwarts the ability of planktonic cells to grow before they are swallowed. Therefore, oral bacteria evolved to form biofilms on hard tooth surfaces and on soft epithelial tissues, which often contain multiple bacterial species. Because these biofilms are easy to study, they have become the paradigm of multispecies biofilms. In this Review we describe the factors involved in the formation of these biofilms, including the initial adherence to the oral tissues and teeth, cooperation between bacterial species in the biofilm, signalling between the bacteria and its role in pathogenesis, and the transfer of DNA between bacteria. In all these aspects distance between cells of different species is integral for oral biofilm growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacteriocins: evolution, ecology, and application.

            Microbes produce an extraordinary array of microbial defense systems. These include classical antibiotics, metabolic by-products, lytic agents, numerous types of protein exotoxins, and bacteriocins. The abundance and diversity of this potent arsenal of weapons are clear. Less clear are their evolutionary origins and the role they play in mediating microbial interactions. The goal of this review is to explore what we know about the evolution and ecology of the most abundant and diverse family of microbial defense systems: the bacteriocins. We summarize current knowledge of how such extraordinary protein diversity arose and is maintained in microbial populations and what role these toxins play in mediating microbial population-level and community-level dynamics. In the latter half of this review we focus on the potential role bacteriocins may play in addressing human health concerns and the current role they serve in food preservation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo.

              Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                07 July 2020
                2020
                : 10
                : 344
                Affiliations
                [1] 1Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou, China
                [2] 2Guangdong Provincial Key Laboratory of Stomatology , Guangzhou, China
                [3] 3The Forsyth Institute , Cambridge, MA, United States
                [4] 4Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine , Boston, MA, United States
                Author notes

                Edited by: Zezhang Tom Wen, Louisiana State University, United States

                Reviewed by: Ping Xu, Virginia Commonwealth University, United States; Lei Cheng, Sichuan University, China

                *Correspondence: Lihong Guo guolh5@ 123456mail.sysu.edu.cn

                This article was submitted to Molecular Bacterial Pathogenesis, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2020.00344
                7358462
                32733820
                6928ebad-8f13-4ff4-8f05-88af1b56e965
                Copyright © 2020 Liu, Liu, Liu, Yang, Lu, He, Shi and Guo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 March 2020
                : 04 June 2020
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 75, Pages: 11, Words: 8262
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Funded by: Pearl River S and T Nova Program of Guangzhou 10.13039/501100009334
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                group b streptococcus,coaggregation,streptococcus mutans,interspecies interactions,streptococcus agalactiae

                Comments

                Comment on this article