Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Macrophage-Mimic Hollow Mesoporous Fe-Based Nanocatalysts for Self-Amplified Chemodynamic Therapy and Metastasis Inhibition via Tumor Microenvironment Remodeling

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsic peroxidase-like activity of ferromagnetic nanoparticles.

          Nanoparticles containing magnetic materials, such as magnetite (Fe3O4), are particularly useful for imaging and separation techniques. As these nanoparticles are generally considered to be biologically and chemically inert, they are typically coated with metal catalysts, antibodies or enzymes to increase their functionality as separation agents. Here, we report that magnetite nanoparticles in fact possess an intrinsic enzyme mimetic activity similar to that found in natural peroxidases, which are widely used to oxidize organic substrates in the treatment of wastewater or as detection tools. Based on this finding, we have developed a novel immunoassay in which antibody-modified magnetite nanoparticles provide three functions: capture, separation and detection. The stability, ease of production and versatility of these nanoparticles makes them a powerful tool for a wide range of potential applications in medicine, biotechnology and environmental chemistry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions

            Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical (. OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions. Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of . OH generated. Notably, various strategies based on the Fenton reaction have been employed to enhance . OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview. Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis of Iron Nanometallic Glasses and Their Application in Cancer Therapy by a Localized Fenton Reaction.

              Metallic glasses and cancer theranostics are emerging fields that do not seem to be related to each other. Herein, we report the facile synthesis of amorphous iron nanoparticles (AFeNPs) and their superior physicochemical properties compared to their crystalline counterpart, iron nanocrystals (FeNCs). The AFeNPs can be used for cancer theranostics by inducing a Fenton reaction in the tumor by taking advantage of the mild acidity and the overproduced H2 O2 in a tumor microenvironment: Ionization of the AFeNPs enables on-demand ferrous ion release in the tumor, and subsequent H2 O2 disproportionation leads to efficient (.)OH generation. The endogenous stimuli-responsive (.)OH generation in the presence AFeNPs enables a highly specific cancer therapy without the need for external energy input.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Applied Materials & Interfaces
                ACS Appl. Mater. Interfaces
                American Chemical Society (ACS)
                1944-8244
                1944-8252
                February 02 2022
                January 18 2022
                February 02 2022
                : 14
                : 4
                : 5053-5065
                Affiliations
                [1 ]Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, P.R. China
                [2 ]School of Medicine, Xiamen University, Xiamen 361102, P.R. China
                [3 ]Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen 518000, P.R. China
                [4 ]Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
                Article
                10.1021/acsami.1c22432
                35040616
                6839a661-4f6f-4b58-8889-26756fbc174c
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article