19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and complexity of cell death: a historical review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Death is the inevitable fate of all living organisms, whether at the individual or cellular level. For a long time, cell death was believed to be an undesirable but unavoidable final outcome of nonfunctioning cells, as inflammation was inevitably triggered in response to damage. However, experimental evidence accumulated over the past few decades has revealed different types of cell death that are genetically programmed to eliminate unnecessary or severely damaged cells that may damage surrounding tissues. Several types of cell death, including apoptosis, necrosis, autophagic cell death, and lysosomal cell death, which are classified as programmed cell death, and pyroptosis, necroptosis, and NETosis, which are classified as inflammatory cell death, have been described over the years. Recently, several novel forms of cell death, namely, mitoptosis, paraptosis, immunogenic cell death, entosis, methuosis, parthanatos, ferroptosis, autosis, alkaliptosis, oxeiptosis, cuproptosis, and erebosis, have been discovered and advanced our understanding of cell death and its complexity. In this review, we provide a historical overview of the discovery and characterization of different forms of cell death and highlight their diversity and complexity. We also briefly discuss the regulatory mechanisms underlying each type of cell death and the implications of cell death in various physiological and pathological contexts. This review provides a comprehensive understanding of different mechanisms of cell death that can be leveraged to develop novel therapeutic strategies for various diseases.

          Cell death mechanisms: implications for disease therapies

          Cell death is a complex and interconnected process that plays a crucial role in maintaining tissue homeostasis and preventing disease. There are various types of cell death, including necrosis, apoptosis, autophagy, and others, each with distinct morphological features and molecular mechanisms. Understanding the diverse processes underlying cell death is essential for understanding diseases and developing new therapies. Recent research has focused on characterizing and distinguishing various forms of cell death, thereby advancing our understanding of their roles in health and disease. The complex mechanisms underlying cell death are underscored by the intricate interconnections among different types of cell death and the regulation of these mechanisms through diverse signaling pathways and environmental factors. Further research is necessary to fully characterize and differentiate among the various forms of cell death and their roles in pathological conditions.

          Related collections

          Most cited references231

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018

            Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis: a review of programmed cell death.

              The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.
                Bookmark

                Author and article information

                Contributors
                hagis@pusan.ac.kr
                Journal
                Exp Mol Med
                Exp Mol Med
                Experimental & Molecular Medicine
                Nature Publishing Group UK (London )
                1226-3613
                2092-6413
                23 August 2023
                23 August 2023
                August 2023
                : 55
                : 8
                : 1573-1594
                Affiliations
                [1 ]GRID grid.262229.f, ISNI 0000 0001 0719 8572, Department of Korean Medical Science, School of Korean Medicine, , Pusan National University, ; Yangsan, Gyeongsangnam-do 50612 Republic of Korea
                [2 ]GRID grid.262229.f, ISNI 0000 0001 0719 8572, Korean Medical Research Center for Healthy Aging, , Pusan National University, ; Yangsan, Gyeongsangnam-do 50612 Republic of Korea
                [3 ]GRID grid.264381.a, ISNI 0000 0001 2181 989X, Department of Precision Medicine, School of Medicine, , Sungkyunkwan University School of Medicine, ; Suwon, Gyeonggi-do 16419 Republic of Korea
                [4 ]GRID grid.411144.5, ISNI 0000 0004 0532 9454, Department of Molecular Biology and Immunology, , Kosin University College of Medicine, ; Busan, 49267 Republic of Korea
                [5 ]GRID grid.42687.3f, ISNI 0000 0004 0381 814X, Department of Biological Sciences, , UNIST, ; Ulsan, 44919 Republic of Korea
                [6 ]GRID grid.61221.36, ISNI 0000 0001 1033 9831, Department of Biomedical Science and Engineering, , Gwangju Institute of Science and Technology, ; Gwangju, 61005 Republic of Korea
                Author information
                http://orcid.org/0000-0002-5869-5250
                http://orcid.org/0000-0001-6283-0171
                Article
                1078
                10.1038/s12276-023-01078-x
                10474147
                37612413
                67f1a480-5bc5-4dc8-b7bf-6543a8a1b65e
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 May 2023
                : 22 June 2023
                : 11 July 2023
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: NRF-2022R1A2C2005130
                Award ID: NRF-2021R1A4A1025662
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © Korean Society for Biochemical and Molecular Biology 2023

                Molecular medicine
                apoptosis,autophagy,entosis,necroptosis
                Molecular medicine
                apoptosis, autophagy, entosis, necroptosis

                Comments

                Comment on this article