189
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Essential Medicinal Chemistry of Curcumin : Miniperspective

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.

          Soluble oligomers are common to most amyloids and may represent the primary toxic species of amyloids, like the Abeta peptide in Alzheimer's disease (AD). Here we show that all of the soluble oligomers tested display a common conformation-dependent structure that is unique to soluble oligomers regardless of sequence. The in vitro toxicity of soluble oligomers is inhibited by oligomer-specific antibody. Soluble oligomers have a unique distribution in human AD brain that is distinct from fibrillar amyloid. These results indicate that different types of soluble amyloid oligomers have a common structure and suggest they share a common mechanism of toxicity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Discovery and resupply of pharmacologically active plant-derived natural products: A review

            Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a “screening hit” through a “drug lead” to a “marketed drug” is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemistry: Chemical con artists foil drug discovery.

                Bookmark

                Author and article information

                Journal
                J Med Chem
                J. Med. Chem
                jm
                jmcmar
                Journal of Medicinal Chemistry
                American Chemical Society
                0022-2623
                1520-4804
                11 January 2017
                09 March 2017
                : 60
                : 5
                : 1620-1637
                Affiliations
                []Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota 55414, United States
                []Department of Pathology, Brigham and Women’s Hospital , Boston, Massachusetts 02115, United States
                [§ ]Center for Natural Product Technologies, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
                []Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
                Author notes
                [* ]Phone: 612-626-6864. E-mail: mwalters@ 123456umn.edu .
                Article
                10.1021/acs.jmedchem.6b00975
                5346970
                28074653
                67e71e09-8539-425c-b108-72df10216cd5
                Copyright © 2017 American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 01 July 2016
                Categories
                Perspective
                Custom metadata
                jm6b00975
                jm-2016-009757

                Pharmaceutical chemistry
                Pharmaceutical chemistry

                Comments

                Comment on this article