The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.
Axons extend great distances to make precise synaptic connections in the developing nervous system. Axons are guided to their targets by the growth cone, a dynamic structure at the axon distal tip that senses extracellular cues telling the axon where to go. In response to guidance cues, growth cones alter their shape and motility resulting in outgrowth and turning. The cytoskeleton (actin and microtubules) underlies growth cone motility and guidance. The signaling mechanisms linking guidance receptors to cytoskeletal change remain mysterious. Here, we define a new signaling mechanism downstream of the guidance receptor UNC-40/DCC involving the GTPases CDC-42 and Rac, which have long been known to control growth cone protrusion. We show that CDC-42 and Rac act in a linear pathway in axon guidance; CDC-42 acts upstream of the GTPase regulatory molecule TIAM-1, which is a GTP exchange factor specific for Rac and which activates Rac signaling. We also show that TIAM-1 acts with UNC-40/DCC signaling in protrusion and axon guidance. Our results imply that Rac GTPase function in axon guidance is complex and that distinct GEFs (TIAM-1 and UNC-73/Trio) might control Rac GTPases in different aspects of axon guidance.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.