7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exocytosis and endocytosis: coordinating and fine-tuning the polar tip growth domain in pollen tubes

      1 , 2 , 2
      3
      Journal of Experimental Botany
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pollen tubes rapidly elongate, penetrate, and navigate through multiple female tissues to reach ovules for sperm delivery by utilizing a specialized form of polar growth known as tip growth. This process requires a battery of cellular activities differentially occurring at the apical growing region of the plasma membrane (PM), such as the differential cellular signaling involving calcium (Ca2+), phospholipids, and ROP-type Rho GTPases, fluctuation of ions and pH, exocytosis and endocytosis, and cell wall construction and remodeling. There is an emerging understanding of how at least some of these activities are coordinated and/or interconnected. The apical active ROP modulates exocytosis to the cell apex for PM and cell wall expansion differentially occurring at the tip. The differentiation of the cell wall involves at least the preferential distribution of deformable pectin polymers to the apex and non-deformable pectin polymers to the shank of pollen tubes, facilitating the apical cell expansion driven by high internal turgor pressure. Recent studies have generated inroads into how the ROP GTPase-based intracellular signaling is coordinated spatiotemporally with the external wall mechanics to maintain the tubular cell shape and how the apical cell wall mechanics are regulated to allow rapid tip growth while maintaining the cell wall integrity under the turgor pressure. Evidence suggests that exocytosis and endocytosis play crucial but distinct roles in this spatiotemporal coordination. In this review, we summarize recent advances in the regulation and coordination of the differential pectin distribution and the apical domain of active ROP by exocytosis and endocytosis in pollen tubes.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: not found

          Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells.

          For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tip-localized receptors control pollen tube growth and LURE sensing in Arabidopsis.

            Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polarized cell growth in higher plants.

              Pollen tubes and root hairs are highly elongated, cylindrically shaped cells whose polarized growth permits them to explore the environment for the benefit of the entire plant. Root hairs create an enormous surface area for the uptake of water and nutrients, whereas pollen tubes deliver the sperm cells to the ovule for fertilization. These cells grow exclusively at the apex and at prodigious rates (in excess of 200 nm/s for pollen tubes). Underlying this rapid growth are polarized ion gradients and fluxes, turnover of cytoskeletal elements (actin microfilaments), and exocytosis and endocytosis of membrane vesicles. Intracellular gradients of calcium and protons are spatially localized at the growing apex; inward fluxes of these ions are apically directed. These gradients and fluxes oscillate with the same frequency as the oscillations in growth rate but not with the same phase. Actin microfilaments, which together with myosin generate reverse fountain streaming, undergo rapid turnover in the apical domain, possibly being regulated by key actin-binding proteins, e.g., profilin, villin, and ADF/cofilin, in concert with the ion gradients. Exocytosis of vesicles at the apex, also dependent on the ion gradients, provides precursor material for the continuously expanding cell wall of the growing cell. Elucidation of the interactions and of the dynamics of these different components is providing unique insight into the mechanisms of polarized growth.
                Bookmark

                Author and article information

                Journal
                Journal of Experimental Botany
                Oxford University Press (OUP)
                0022-0957
                1460-2431
                April 23 2020
                April 23 2020
                March 16 2020
                April 23 2020
                April 23 2020
                March 16 2020
                : 71
                : 8
                : 2428-2438
                Affiliations
                [1 ]FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
                [2 ]Department of Botany and Plant Sciences and Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
                [3 ]University of Antwerp, Belgium
                Article
                10.1093/jxb/eraa134
                32173729
                6788759f-280e-4c3b-bb19-430edf83f292
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article