4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ARMADILLO REPEAT ONLY proteins confine Rho GTPase signalling to polar growth sites

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide insertional mutagenesis of Arabidopsis thaliana.

          J M Alonso (2003)
          Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane recognition by phospholipid-binding domains.

            Many different globular domains bind to the surfaces of cellular membranes, or to specific phospholipid components in these membranes, and this binding is often tightly regulated. Examples include pleckstrin homology and C2 domains, which are among the largest domain families in the human proteome. Crystal structures, binding studies and analyses of subcellular localization have provided much insight into how members of this diverse group of domains bind to membranes, what features they recognize and how binding is controlled. A full appreciation of these processes is crucial for understanding how protein localization and membrane topography and trafficking are regulated in cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scaffold proteins: hubs for controlling the flow of cellular information.

              The spatial and temporal organization of molecules within a cell is critical for coordinating the many distinct activities carried out by the cell. In an increasing number of biological signaling processes, scaffold proteins have been found to play a central role in physically assembling the relevant molecular components. Although most scaffolds use a simple tethering mechanism to increase the efficiency of interaction between individual partner molecules, these proteins can also exert complex allosteric control over their partners and are themselves the target of regulation. Scaffold proteins offer a simple, flexible strategy for regulating selectivity in pathways, shaping output behaviors, and achieving new responses from preexisting signaling components. As a result, scaffold proteins have been exploited by evolution, pathogens, and cellular engineers to reshape cellular behavior.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Plants
                Nat. Plants
                Springer Science and Business Media LLC
                2055-0278
                October 05 2020
                Article
                10.1038/s41477-020-00781-1
                33020609
                d03b9384-ce5b-4c91-9009-5d0edc0b2d34
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article