7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exogenous Rosmarinic Acid Application Enhances Thermotolerance in Tomatoes

      , , , , , ,
      Plants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Due to global warming, high-temperature stress has become a major threat to plant growth and development, which causes a severe challenge to food security worldwide. Therefore, it is necessary to explore the plant bioactive molecules, which could be a promising approach to strengthening plant thermotolerance. Rosmarinic acid (RA) serves as a plant-derived phenolic compound and has beneficial and health-promoting effects for human beings. However, the involvement of RA in plant stress response and the underlying molecular mechanism was largely unknown. In this study, we found that exogenous RA application conferred improved thermotolerance in tomatoes. The transcript abundance and the enzyme activity of enzymatic antioxidants, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and dehydroascorbate reductase (DHAR), were further promoted by RA treatment in tomato plants subjected to high-temperature stress. Moreover, RA activated the antioxidant system and modulated the cellular redox homeostasis also associated with the redox status of nonenzymatic glutathione and ascorbic acid. The results of RNA-seq data showed that transcriptional regulation was involved in RA-mediated thermotolerance. Consistently, the gene expression of several high temperature-responsive transcription factors like HsfA2, and WRKY family genes were substantially induced by RA treatment, which potentially contributed to the induction of heat shock proteins (HSPs). Overall, these findings not only gave a direct link between RA and plant thermotolerance but also provided an attractive approach to protecting crop plants from high-temperature damage in a global warming future.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator

          Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress

            Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional Regulatory Network of Plant Heat Stress Response.

              Heat stress (HS) is becoming an increasingly significant problem for food security as global warming progresses. Recent studies have elucidated the complex transcriptional regulatory networks involved in HS. Here, we provide an overview of current knowledge regarding the transcriptional regulatory network and post-translational regulation of the transcription factors involved in the HS response. Increasing evidence suggests that epigenetic regulation and small RNAs are important in heat-induced transcriptional responses and stress memory. It remains to be elucidated how plants sense and respond to HS. Several recent reports have discussed the heat sensing and signaling that activate transcriptional cascades; thus, we also highlight future directions of promoting crop tolerance to HS using these factors or other strategies for agricultural applications.
                Bookmark

                Author and article information

                Contributors
                Journal
                PLANCD
                Plants
                Plants
                MDPI AG
                2223-7747
                May 2022
                April 26 2022
                : 11
                : 9
                : 1172
                Article
                10.3390/plants11091172
                35567173
                66a3e3b9-3bfd-44d8-8046-ee47b1387d3b
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article