14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Developing predictive biomarkers that can detect the tipping point before metastasis of hepatocellular carcinoma (HCC), is critical to prevent further irreversible deterioration. To discover such early-warning signals or biomarkers of pulmonary metastasis in HCC, we analyse time-series gene expression data in spontaneous pulmonary metastasis mice HCCLM3-RFP model with our dynamic network biomarker (DNB) method, and identify CALML3 as a core DNB member. All experimental results of gain-of-function and loss-of-function studies show that CALML3 could indicate metastasis initiation and act as a suppressor of metastasis. We also reveal the biological role of CALML3 in metastasis initiation at a network level, including proximal regulation and cascading influences in dysfunctional pathways. Our further experiments and clinical samples show that DNB with CALML3 reduced pulmonary metastasis in liver cancer. Actually, loss of CALML3 predicts shorter overall and relapse-free survival in postoperative HCC patients, thus providing a prognostic biomarker and therapy target in HCC.

          Abstract

          Biomarkers of the tipping point before metastasis in hepatocellular carcinoma (HCC) could help stratify patient treatment. Here, the authors study dynamic network biomarkers to identify CALM3 as a potential suppressor of metastasis, the level of which can predict overall survival and relapse-free survival in postoperative HCC.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Network-based classification of breast cancer metastasis

          Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer research. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein-network-based approach that identifies markers not as individual genes but as subnetworks extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses for pathways involved in tumor progression. Although genes with known breast cancer mutations are typically not detected through analysis of differential expression, they play a central role in the protein network by interconnecting many differentially expressed genes. We find that the subnetwork markers are more reproducible than individual marker genes selected without network information, and that they achieve higher accuracy in the classification of metastatic versus non-metastatic tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mfuzz: A software package for soft clustering of microarray data

            For the analysis of microarray data, clustering techniques are frequently used. Most of such methods are based on hard clustering of data wherein one gene (or sample) is assigned to exactly one cluster. Hard clustering, however, suffers from several drawbacks such as sensitivity to noise and information loss. In contrast, soft clustering methods can assign a gene to several clusters. They can overcome shortcomings of conventional hard clustering techniques and offer further advantages. Thus, we constructed an R package termed Mfuzz implementing soft clustering tools for microarray data analysis. The additional package Mfuzzgui provides a convenient TclTk based graphical user interface. Availability The R package Mfuzz and Mfuzzgui are available at http://itb1.biologie.hu-berlin.de/~futschik/software/R/Mfuzz/index.html. Their distribution is subject to GPL version 2 license.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of signaling pathways in the development and treatment of hepatocellular carcinoma.

              Hepatocellular carcinoma (HCC) is a highly prevalent, treatment-resistant malignancy with a multifaceted molecular pathogenesis. Current evidence indicates that during hepatocarcinogenesis, two main pathogenic mechanisms prevail: (1) cirrhosis associated with hepatic regeneration after tissue damage caused by hepatitis infection, toxins (for example, alcohol or aflatoxin) or metabolic influences, and (2) mutations occurring in single or multiple oncogenes or tumor suppressor genes. Both mechanisms have been linked with alterations in several important cellular signaling pathways. These pathways are of interest from a therapeutic perspective, because targeting them may help to reverse, delay or prevent tumorigenesis. In this review, we explore some of the major pathways implicated in HCC. These include the RAF/MEK/ERK pathway, phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, WNT/beta-catenin pathway, insulin-like growth factor pathway, hepatocyte growth factor/c-MET pathway and growth factor-regulated angiogenic signaling. We focus on the role of these pathways in hepatocarcinogenesis, how they are altered, and the consequences of these abnormalities. In addition, we also review the latest preclinical and clinical data on the rationally designed targeted agents that are now being directed against these pathways, with early evidence of success.
                Bookmark

                Author and article information

                Contributors
                lnchen@sibs.ac.cn
                xiajinglin@fudan.edu.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                14 February 2018
                14 February 2018
                2018
                : 9
                : 678
                Affiliations
                [1 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Liver Cancer Institute, Zhongshan Hospital, , Fudan University, ; 180 Fenglin Road, Shanghai, 200032 China
                [2 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Minhang Branch, Zhongshan Hospital, , Fudan University/Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, ; 170 Xinsong Road, Shanghai, 201199 China
                [3 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, CAS Center for Excellence in Animal Evolution and Genetics, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, , University of Chinese Academy of Sciences, ; 320 Yueyang Road, Shanghai, 200031 China
                [4 ]GRID grid.440637.2, School of Life Science and Technology, , ShanghaiTech University, ; 100 Haike Road, Shanghai, 201210 China
                [5 ]ISNI 0000 0001 0125 2443, GRID grid.8547.e, Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, , Fudan University, ; 130 Dong’an Road, Shanghai, 200032 China
                Article
                3024
                10.1038/s41467-018-03024-2
                5813207
                29445139
                64b780c6-760a-408a-beb4-95c9d692aca1
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 February 2017
                : 15 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article