8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Single-atom catalysts (SACs) have enormous significance in heterogeneous catalysis.

          Abstract

          Single-atom catalysts (SACs) have enormous significance in heterogeneous catalysis. However, understanding how SACs function at the molecular level remains a huge challenge. Here, we report a general approach to anchor Pt single-atom intercalated in layered double hydroxide (LDH) and decipher the alternating synergy between Pt single-atom and Ni 3Fe LDH support for overall water splitting. Aided with Tafel slope, interface species evolution and control experiments, operando electrochemical impedance spectroscopy (EIS) can distinguish interface charge transport and elementary reactions during hydrogen and oxygen evolution reactions (HER and OER). For HER, interlayer Pt single-atom vastly enhances electron transferability of LDH support, and Ni 3Fe LDH support accelerates water dissociation, thus resulting in a mixture of mechanisms (Heyrovsky–Volmer and Tafel–Volmer) in 1 M KOH. For OER, interlayer Pt single-atom not only prompts active phase transition from NiFe LDH to Ni 2+ δ Fe 3+ ζ O x H y , but also optimizes OER intrinsic activity of Ni 2+ δ –O–Fe 3+ ζ in Ni 2+ δ Fe 3+ ζ O x H y . Overall, we provide a referential paradigm for SACs synthesis strategy and unscrambling its alternating synergy.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Single-atom catalysis of CO oxidation using Pt1/FeOx.

          Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Heterogeneous single-atom catalysis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sustainable hydrogen production.

              Identifying and building a sustainable energy system are perhaps two of the most critical issues that today's society must address. Replacing our current energy carrier mix with a sustainable fuel is one of the key pieces in that system. Hydrogen as an energy carrier, primarily derived from water, can address issues of sustainability, environmental emissions, and energy security. Issues relating to hydrogen production pathways are addressed here. Future energy systems require money and energy to build. Given that the United States has a finite supply of both, hard decisions must be made about the path forward, and this path must be followed with a sustained and focused effort.
                Bookmark

                Author and article information

                Contributors
                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                December 09 2021
                2021
                : 14
                : 12
                : 6428-6440
                Affiliations
                [1 ]State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, the National Supercomputer Centers in Changsha, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, P. R. China
                [2 ]College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
                [3 ]Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
                [4 ]Collaborative Innovation Center of Chemistry for Energy Material, Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
                [5 ]ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW, 2522, Australia
                Article
                10.1039/D1EE01395E
                645a3b0f-eb61-4039-98fa-f21e69451694
                © 2021

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article