16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM

      , , ,
      Advances in Materials Science and Engineering
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silver has been recognized as a nontoxic, safe inorganic antibacterial/antifungal agent used for centuries. Silver demonstrates a very high potential in a wide range of biological applications, more particularly in the form of nanoparticles. Environmentally friendly synthesis methods are becoming more and more popular in chemistry and chemical technologies and the need for ecological methods of synthesis is increasing; the aim is to reduce polluting reaction by-products. Another important advantage of green synthesis methods lies in its cost-effectiveness and in the abundance of raw materials. During the last five years, many efforts were put into developing new greener and cheaper methods for the synthesis of nanoparticles. The cost decrease and less harmful synthesis methods have been the motivation in comparison to other synthesis techniques where harmful reductive organic species produce hazardous by-products. This environment-friendly aspect has now become a major social issue and is instrumental in combatting environmental pollution through reduction or elimination of hazardous materials. This review describes a brief overview of the research on green synthesis of silver metal nanoparticles and the influence of the method on their size and morphology.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Geranium leaf assisted biosynthesis of silver nanoparticles.

              Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. In this paper, we report on the use of Geranium (Pelargonium graveolens) leaf extract in the extracellular synthesis of silver nanoparticles. On treating aqueous silver nitrate solution with geranium leaf extract, rapid reduction of the silver ions is observed leading to the formation of highly stable, crystalline silver nanoparticles in solution. Transmission electron microscopy analysis of the silver particles indicated that they ranged in size from 16 to 40 nm and were assembled in solution into quasilinear superstructures. The rate of reduction of the silver ions by the geranium leaf extract is faster than that observed by us in an earlier study using a fungus, Fusarium oxysporum, thus highlighting the possibility that nanoparticle biosynthesis methodologies will achieve rates of synthesis comparable to those of chemical methods. This study also represents an important advance in the use of plants over microorganisms in the biosynthesis of metal nanoparticles.
                Bookmark

                Author and article information

                Journal
                Advances in Materials Science and Engineering
                Advances in Materials Science and Engineering
                Hindawi Limited
                1687-8434
                1687-8442
                2015
                2015
                : 2015
                :
                : 1-9
                Article
                10.1155/2015/682749
                64358944-2d9b-45eb-8565-ba4b44fbc783
                © 2015

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article