4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique.

      The Journal of bone and joint surgery. American volume
      Aged, Biomechanical Phenomena, Humans, In Vitro Techniques, Knee Joint, physiology, Ligaments, Articular, Middle Aged, Movement

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new technique was used to measure the resultant forces in the anterior cruciate ligament during a series of loading experiments on seventeen fresh-frozen cadaver specimens. The base of the ligament's tibial attachment was mechanically isolated with a coring cutter, and a specially designed load-transducer was fixed to the bone-plug that contained the ligament's tibial insertion so that the resultant forces were directly measured by the load-cell. Although the magnitudes of values for forces varied considerably between specimens for a given test condition, the patterns of loading with respect to direction of loading and the angle of flexion of the knee were remarkably consistent. Passive extension of the knee generated forces in the ligament only during the last 10 degrees of extension; at 5 degrees of hyperextension, the forces ranged from fifty to 240 newtons (mean, 118 newtons). When a 200-newton pull of the quadriceps tendon was applied to extend a knee slowly against tibial resistance, however, the force in the ligament increased at all angles of flexion of the knee. Internal tibial torque always generated greater forces in the ligament than did external tibial torque; higher forces were recorded as the knee was extended. The greatest forces (133 to 370 newtons) were generated when ten newton-meters of internal tibial torque was applied to a hyperextended knee. Fifteen newton-meters of applied varus moment generated forces of ninety-four to 177 newtons at full extension; fifteen newton-meters of applied valgus moment generated a mean force of fifty-six newtons, which remained unchanged with flexion of the knee. The force during straight anterior translation of the tibia was approximately equal to the anterior force applied to the tibia. The application of 925 newtons of tibiofemoral contact force reduced the mean force in the ligament that was generated by 200 newtons of anterior pull on the tibia by 36 per cent at full extension and 46 per cent at 20 degrees of flexion.

          Related collections

          Author and article information

          Journal
          2324143
          10.2106/00004623-199072040-00014

          Aged,Biomechanical Phenomena,Humans,In Vitro Techniques,Knee Joint,physiology,Ligaments, Articular,Middle Aged,Movement

          Comments

          Comment on this article