Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall β-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 β-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype in β-glucan masking during infection and treatment has not been addressed. Here, we show that during infection of mice, the C. albicans β-glucan is masked initially but becomes exposed later in several organs. At all measured stages of infection, there is no difference in β-glucan exposure between yeast-form and hyphal cells. We have previously shown that sub-inhibitory doses of the anti-fungal drug caspofungin can expose β-glucan in vitro, suggesting that the drug may enhance immune activity during therapy. This report shows that caspofungin also mediates β-glucan unmasking in vivo. Surprisingly, caspofungin preferentially unmasks filamentous cells, as opposed to yeast form cells, both in vivo and in vitro. The fungicidal activity of caspofungin in vitro is also filament-biased, as corroborated using yeast-locked and hyphal-locked mutants. The uncloaking of filaments is not a general effect of anti-fungal drugs, as another anti-fungal agent does not have this effect. These results highlight the advantage of studying host–pathogen interaction in vivo and suggest new avenues for drug development.
Candida is a common human commensal but disseminated candidiasis is a serious clinical problem, especially among immunocompromised patients. The innate immune system controls Candida infection, in part through the germline-encoded β-glucan receptor Dectin-1. However, during in vitro growth, Candida albicans mutes Dectin-1 recognition by cloaking its β-glucan underneath a layer of mannan. Bridging these two seemingly contradictory observations, we demonstrate that C. albicans masks β-glucan early during infection, but it becomes exposed later, allowing Dectin-1 to recognize the fungi and mediate immunity. Remarkably, treatment of mice with sub-therapeutic doses of the antifungal drug caspofungin causes exposure of β-glucan on C. albicans even when it would not be exposed naturally. We introduce a new technique for monitoring of epitope exposure during infection, which can be used to monitor the availability of any epitope for immune recognition. This technique allowed us to show that natural unmasking of β-glucan is not morphotype-specific, but drug-mediated unmasking is biased towards the invasive filamentous form of C. albicans. These results highlight the unexplored area of dynamic epitope exposure during infection and therapy, which might be targetable to enhance immune recognition and fungal clearance.