0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Potential role of endoplasmic reticulum stress in broiler woody breast myopathy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although broiler (meat-type) chickens are one of the most efficient protein sources that supports the livelihoods and food security of billions of people worldwide, they are facing several challenges. Due to its unknown etiology and heavy economic impact, woody breast (WB) myopathy is one of the most challenging problems facing the poultry industry, and for which there is no effective solution. Here, using a primary chicken myotube culture model, we show that hypoxia and endoplasmic reticulum (ER) stress are an integral component of the etiology of the myopathy. Multiple components of the ER stress response are significantly upregulated in WB as compared with normal muscle, and this response was mimicked by hypoxic conditions in chicken primary myotube culture. In addition, apoptotic pathways were activated as indicated by increases in active caspase 3 protein levels in both WB-affected tissues and hypoxic myotube culture, and caspase 3 activity and apoptosis in hypoxic myotube culture. Finally, as a phenotypic hallmark of WB is enhanced fibrosis and increased collagen aggregation, here, we show that hypoxic conditions increase collagen 1A1 and 1A2 gene expression, as well as collagen 1 protein levels in primary myotubes. These effects were partially reversed by tauroursodeoxycholic acid (TUDCA), an ER-stress inhibitor, in myotube culture. Taken together, these findings indicate that hypoxia and ER stress are present in WB, hypoxia can upregulate the cell death arm of the unfolded protein response (UPR) and lead to collagen production in a culture model of WB. This opens new vistas for potential mechanistic targets for future effective interventions to mitigate this myopathy.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          Analyzing real-time PCR data by the comparative CT method

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium signaling.

            Calcium ions (Ca(2+)) impact nearly every aspect of cellular life. This review examines the principles of Ca(2+) signaling, from changes in protein conformations driven by Ca(2+) to the mechanisms that control Ca(2+) levels in the cytoplasm and organelles. Also discussed is the highly localized nature of Ca(2+)-mediated signal transduction and its specific roles in excitability, exocytosis, motility, apoptosis, and transcription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signal integration in the endoplasmic reticulum unfolded protein response.

              The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.
                Bookmark

                Author and article information

                Contributors
                Journal
                American Journal of Physiology-Cell Physiology
                American Journal of Physiology-Cell Physiology
                American Physiological Society
                0363-6143
                1522-1563
                March 01 2023
                March 01 2023
                : 324
                : 3
                : C679-C693
                Affiliations
                [1 ]Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
                [2 ]AB Vista, Marlborough, United Kingdom
                Article
                10.1152/ajpcell.00275.2022
                36717103
                63e3c124-5e8a-4006-82a1-91e2472e62a8
                © 2023
                History

                Comments

                Comment on this article