7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recurrent squamous cell carcinoma and a novel mutation in a patient with xeroderma pigmentosum: a case report

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Xeroderma pigmentosum is an extremely serious genetic disorder defined by sensitivity to sunlight, resulting in sunburn and pigment changes. If patients are not completely protected from ultraviolet radiation, xeroderma pigmentosum is characterized by a greatly increased risk of sunlight-induced cutaneous neoplasms. There is no standard therapy for skin cancer of xeroderma pigmentosum. However, immune checkpoint inhibitors were reported to increase response rates and improve outcomes and life expectancy in patients with various cancers, including squamous cell carcinoma in xeroderma pigmentosum. In this paper, we report on a patient with xeroderma pigmentosum from a consanguineous family with recurrent facial chemotherapy-resistant squamous cell carcinoma lesions treated successfully with an anti-programmed cell death protein 1 monoclonal antibody in both relapses.

          Case presentation

          A 7-year-old Turkish male was referred to our oncology department for recurring squamous cell carcinoma after local excision of the tumor over his nose. The lesion was a rapidly growing lesion, measuring 8 × 4 cm in size. Physical examination revealed that he also had hemorrhagic crusted plaques and nodules over both eyelids and upper lip, with multiple hypo- and hyperpigmented punctate lesions all over his body. After two more cycles of chemotherapy, progressive disease was noted, and a new lesion on the right eyelid caused blurred vision. Anti-programmed cell death protein 1 antibody treatment was planned with concomitant radiotherapy. He received nivolumab every 3 weeks for 4 months, improving his vision. No new lesions or active complaints have been observed in the current situation, and complete remission has been achieved. On the last admission, the patient was clinically diagnosed with xeroderma pigmentosum. Owing to the condition’s genetic heterogeneity, whole-exome sequencing was performed with Ion Proton next-generation sequencing platform, and the c.2250 + 1G>A splice site mutation of the XPC gene was detected in the homozygous state.

          Conclusions

          The clinical report emphasizes the importance of clinical awareness and crucial early diagnosis of xeroderma pigmentosum and presents a novel causative homozygous c.2250 + 1G>A splice site mutation. Our case proves that next-generation sequencing is an effective method for the rapid diagnosis and determination of xeroderma pigmentosum genetic etiology.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns and determinants of vascular plant diversity.

          Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains approximately 70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incidence of DNA repair deficiency disorders in western Europe: Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy.

            Laboratory diagnosis for DNA repair diseases has been performed in western Europe from the early seventies for xeroderma pigmentosum (XP) and from the mid-eighties for Cockayne syndrome (CS) and trichothiodystrophy (TTD). The combined data from the DNA repair diagnostic centres in France, (West) Germany, Italy, the Netherlands and the United Kingdom have been investigated for three groups of diseases: XP (including XP-variant), CS (including XP/CS complex) and TTD. Incidences in western Europe were for the first time established at 2.3 per million livebirths for XP, 2.7 per million for CS and 1.2 per million for TTD. As immigrant populations were disproportionately represented in the patients' groups, incidences were also established for the autochthonic western European population at: 0.9 per million for XP, 1.8 per million for CS and 1.1 per million for TTD. Perhaps contrary to general conceptions, compared to XP the incidence of CS appears to be somewhat higher and the incidence of TTD to be quite similar in the native West-European population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SHINING A LIGHT ON XERODERMA PIGMENTOSUM

              Xeroderma pigmentosum (XP) is a rare, autosomal recessive disorder of DNA repair characterized by sun sensitivity and ultraviolet (UV) induced skin and mucous membrane cancers. Described in 1874 by Moriz Kaposi in Vienna, nearly 100 years later James Cleaver in San Francisco reported defective DNA repair in XP cells. This eventually provided the basis for a mechanistic link between sun exposure, DNA damage, somatic mutations and skin cancer. XP cells were found to have defects in 7 of the proteins of the nucleotide excision repair pathway and in DNA polymerase eta. XP cells are hypersensitive to killing by UV and XP cancers have characteristic “UV signature” mutations. Clinical studies at NIH found a nearly 10,000-fold increase in skin cancer in XP patients under age 20 years demonstrating the substantial importance of DNA repair in cancer prevention in the general population. About 25 % of XP patients have progressive neurological degeneration with progressive loss of neurons, probably from DNA damage induced by oxidative metabolism which kills non-dividing cells in the nervous system. Interestingly, patients with another disorder, trichothiodystrophy have defects in some of the same genes as XP but they have primary developmental abnormalities without an increase in skin cancer.
                Bookmark

                Author and article information

                Contributors
                ezgiaysu98@gmail.com , ezgisahin@hacettepe.edu.tr
                Journal
                J Med Case Rep
                J Med Case Rep
                Journal of Medical Case Reports
                BioMed Central (London )
                1752-1947
                28 July 2022
                28 July 2022
                2022
                : 16
                : 306
                Affiliations
                [1 ]GRID grid.14442.37, ISNI 0000 0001 2342 7339, Hacettepe University, Faculty of Medicine, ; Ankara, Turkey
                [2 ]GRID grid.14442.37, ISNI 0000 0001 2342 7339, Department of Medical Genetics, Gene Mapping Laboratory, , Hacettepe University Medical Faculty, ; Ankara, Turkey
                [3 ]GRID grid.14442.37, ISNI 0000 0001 2342 7339, Department of Pediatrics, Pediatric Genetics, , Hacettepe University Medical Faculty, ; Ankara, Turkey
                [4 ]GRID grid.14442.37, ISNI 0000 0001 2342 7339, Department of Pediatric Oncology, Institute of Oncology, , Hacettepe University, ; Ankara, Turkey
                Author information
                http://orcid.org/0000-0001-7758-2318
                Article
                3524
                10.1186/s13256-022-03524-2
                9336083
                35902966
                63c8d867-0200-4230-8c85-4a97a1b70f17
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 April 2022
                : 14 July 2022
                Categories
                Case Report
                Custom metadata
                © The Author(s) 2022

                Medicine
                xeroderma pigmentosum,squamous cell carcinoma,whole-exome sequencing,immune checkpoint inhibitors,nucleotide excision repair,case report

                Comments

                Comment on this article