121
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using quality scores and longer reads improves accuracy of Solexa read mapping

      research-article
      1 , 1 , 1 ,
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Second-generation sequencing has the potential to revolutionize genomics and impact all areas of biomedical science. New technologies will make re-sequencing widely available for such applications as identifying genome variations or interrogating the oligonucleotide content of a large sample ( e.g. ChIP-sequencing). The increase in speed, sensitivity and availability of sequencing technology brings demand for advances in computational technology to perform associated analysis tasks. The Solexa/Illumina 1G sequencer can produce tens of millions of reads, ranging in length from ~25–50 nt, in a single experiment. Accurately mapping the reads back to a reference genome is a critical task in almost all applications. Two sources of information that are often ignored when mapping reads from the Solexa technology are the 3' ends of longer reads, which contain a much higher frequency of sequencing errors, and the base-call quality scores.

          Results

          To investigate whether these sources of information can be used to improve accuracy when mapping reads, we developed the RMAP tool, which can map reads having a wide range of lengths and allows base-call quality scores to determine which positions in each read are more important when mapping. We applied RMAP to analyze data re-sequenced from two human BAC regions for varying read lengths, and varying criteria for use of quality scores. RMAP is freely available for downloading at http://rulai.cshl.edu/rmap/.

          Conclusion

          Our results indicate that significant gains in Solexa read mapping performance can be achieved by considering the information in 3' ends of longer reads, and appropriately using the base-call quality scores. The RMAP tool we have developed will enable researchers to effectively exploit this information in targeted re-sequencing projects.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          PatternHunter: faster and more sensitive homology search.

          Genomics and proteomics studies routinely depend on homology searches based on the strategy of finding short seed matches which are then extended. The exploding genomic data growth presents a dilemma for DNA homology search techniques: increasing seed size decreases sensitivity whereas decreasing seed size slows down computation. We present a new homology search algorithm 'PatternHunter' that uses a novel seed model for increased sensitivity and new hit-processing techniques for significantly increased speed. At Blast levels of sensitivity, PatternHunter is able to find homologies between sequences as large as human chromosomes, in mere hours on a desktop. PatternHunter is available at http://www.bioinformaticssolutions.com, as a commercial package. It runs on all platforms that support Java. PatternHunter technology is being patented; commercial use requires a license from BSI, while non-commercial use will be free.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Algorithms on Stings, Trees, and Sequences : Computer Science and Computational Biology

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complete MHC haplotype sequencing for common disease gene mapping.

              The future systematic mapping of variants that confer susceptibility to common diseases requires the construction of a fully informative polymorphism map. Ideally, every base pair of the genome would be sequenced in many individuals. Here, we report 4.75 Mb of contiguous sequence for each of two common haplotypes of the major histocompatibility complex (MHC), to which susceptibility to >100 diseases has been mapped. The autoimmune disease-associated-haplotypes HLA-A3-B7-Cw7-DR15 and HLA-A1-B8-Cw7-DR3 were sequenced in their entirety through a bacterial artificial chromosome (BAC) cloning strategy using the consanguineous cell lines PGF and COX, respectively. The two sequences were annotated to encompass all described splice variants of expressed genes. We defined the complete variation content of the two haplotypes, revealing >18,000 variations between them. Average SNP densities ranged from less than one SNP per kilobase to >60. Acquisition of complete and accurate sequence data over polymorphic regions such as the MHC from large-insert cloned DNA provides a definitive resource for the construction of informative genetic maps, and avoids the limitation of chromosome regions that are refractory to PCR amplification. Copyright 2004 Cold Spring Harbor Laboratory Press
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central
                1471-2105
                2008
                28 February 2008
                : 9
                : 128
                Affiliations
                [1 ]Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11274, USA
                Article
                1471-2105-9-128
                10.1186/1471-2105-9-128
                2335322
                18307793
                62d271b2-a238-463c-ab5d-fa73822b54cb
                Copyright © 2008 Smith et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 October 2007
                : 28 February 2008
                Categories
                Research Article

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article