53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antioxidant and Anti-Fatigue Activities of Phenolic Extract from the Seed Coat of Euryale ferox Salisb. and Identification of Three Phenolic Compounds by LC-ESI-MS/MS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigated the antioxidant potential and anti-fatigue effects of phenolics extracted from the seed coat of Euryale ferox Salisb. The in vitro antioxidant potentials, including scavenging DPPH, hydroxyl radical activities and reducing power were evaluated. Antioxidant status in vivo was analyzed by SOD, CAT, GSH-Px activities and the MDA content in liver and kidneys of D-galactose-induced aging mice. The anti-fatigue effect was evaluated using an exhaustive swimming test, along with the determination of LDH, BUN and HG content. The phenolic extract possessed notable antioxidant effects on DPPH, hydroxyl radical scavenging and reducing power. The mice which received the phenolic extract showed significant increases of SOD, CAT (except for in the kidney), GSH-Px activities, and a decrease of MDA content. The average exhaustive swimming time was obviously prolonged. Meanwhile, increase of LDH content and decrease of BUN content were observed after mice had been swimming for 15 min. The HG storage of mice was improved in the high and middle dose extract groups compared with the normal group. The contents of total phenols and gallic acid of the extract were determined. Three compounds in the extract were identified as 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-chroman-4-one, 5,7,4-trihydroxyflavanone and buddlenol E. These results suggest that the extract of E. ferox is a promising source of natural antioxidants and anti-fatigue material for use in functional foods and medicines.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Free radicals, oxidative stress, and antioxidants in human health and disease

          Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body. Free-radical mechanisms have been implicated in the pathology of several human diseases, including cancer, atherosclerosis, malaria, and rheumatoid arthritis and neurodegenerative diseases. For example, the superoxide radical (O2 ·−) and hydrogen peroxide (H2O2) are known to be generated in the brain and nervous system in vivo, and several areas of the human brain are rich in iron, which appears to be easily mobilizable in a form that can stimulate free-radical reactions. Antioxidant defenses to remove O2 ·− and H2O2 exist. Superoxide dismutases (SOD) remove O2 ·− by greatly accelerating its conversion to H2O2. Catalases in peroxisomes convert H2O2 into water and O2 and help to dispose of H2O2 generated by the action of the oxidase enzymes that are located in these organelles. Other important H2O2-removing enzymes in human cells are the glutathione peroxidases. When produced in excess, ROS can cause tissue injury. However, tissue injury can itself cause ROS generation (e.g., by causing activation of phagocytes or releasing transition metal ions from damaged cells), which may (or may not, depending on the situation) contribute to a worsening of the injury. Assessment of oxidative damage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA (e.g., 8-hydroxydeoxyguanosine), lipids (e.g., isoprostanes), and proteins (altered amino acids) would not only advance our understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            By-products of plant food processing as a source of functional compounds — recent developments

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives.

              Gallic acid and its derivatives are a group of naturally occurring polyphenol antioxidants which have recently been shown to have potential healthy effects. In order to understand the relationship between the structures of gallic acid derivatives, their antioxidant activities, and neuroprotective effects, we examined their free radical scavenging effects in liposome and anti-apoptotic activities in human SH-SY5Y cell induced by 6-hydrodopamine autooxidation. It was found that these polyphenol antioxidants exhibited different hydrophobicity and could cross through the liposome membrane to react with 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical in a time and dose-dependent manner. At the same time, the structure-antioxidant activity relationship of gallic acid derivatives on scavenging DPPH free radical in the liposome was also analyzed based on theoretical investigations. Analysis of cell apoptosis, intracellular GSH levels, production of ROS and the influx of Ca(2+) indicated that the protective effects of gallic acid derivatives in cell systems under oxidative stress depend on both their antioxidant capacities and hydrophobicity. However, the neuroprotective effects of gallic acid derivatives seem to depend more on their molecular polarities rather than antioxidant activities in the human SH-SY5Y cell line. In conclusion, these results reveal that compounds with high antioxidant activity and appropriate hydrophobicity are generally more effective in preventing the injury of oxidative stress in neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                09 September 2013
                September 2013
                : 18
                : 9
                : 11003-11021
                Affiliations
                [1 ]The School of Pharmacy, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Nanjing 210023, Jiangsu, China; E-Mails: wuchengying1979@ 123456gmail.com (C.Y.W.); kedingyu@ 123456126.com (R.C.); wxs501@ 123456gmail.com (X.S.W.); shen.bei.2008@ 123456163.com (B.S.); njyuewei@ 123456126.com (W.Y.)
                [2 ]Suzhou Institute for Drug Control, Suzhou 215104, Jiangsu, China
                [3 ]Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, No. 138, Xianlin Avenue, Nanjing 210023, Jiangsu, China
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Author to whom correspondence should be addressed; E-Mail: qnwyjs@ 123456163.com ; Tel.: +86-25-8581-1507; Fax: +86-25-8581-1524.
                Article
                molecules-18-11003
                10.3390/molecules180911003
                6270581
                24022762
                62c10f4a-9621-423f-b9f8-6263b2688635
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 05 August 2013
                : 01 September 2013
                : 02 September 2013
                Categories
                Article

                euryale ferox salisb.,phenolic extract,antioxidant activity,anti-fatigue activity

                Comments

                Comment on this article