33
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both anti-PD1/PD-L1 therapy and oncolytic virotherapy have demonstrated promise, yet have exhibited efficacy in only a small fraction of cancer patients. Here we hypothesized that an oncolytic poxvirus would attract T cells into the tumour, and induce PD-L1 expression in cancer and immune cells, leading to more susceptible targets for anti-PD-L1 immunotherapy. Our results demonstrate in colon and ovarian cancer models that an oncolytic vaccinia virus attracts effector T cells and induces PD-L1 expression on both cancer and immune cells in the tumour. The dual therapy reduces PD-L1 + cells and facilitates non-redundant tumour infiltration of effector CD8 +, CD4 + T cells, with increased IFN-γ, ICOS, granzyme B and perforin expression. Furthermore, the treatment reduces the virus-induced PD-L1 + DC, MDSC, TAM and T reg, as well as co-inhibitory molecules-double-positive, severely exhausted PD-1 +CD8 + T cells, leading to reduced tumour burden and improved survival. This combinatorial therapy may be applicable to a much wider population of cancer patients.

          Abstract

          Anti-PD-L1 therapy often fails in cancers with minimal lymphocytic infiltrates and low PD-L1 expression. Here, the authors show that an oncolytic virus increases PD-L1 expression in cancer models and that the combination with an anti-PD-L1 antibody enhances therapy by increasing the infiltration of activated T cells, and reducing exhausted T cells.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation

          Hypoxia is a common feature of solid tumors (Semenza, 2011). Hypoxic zones in tumors attract immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs; Corzo et al., 2010), tumor-associated macrophages (TAMs; Doedens et al., 2010; Imtiyaz et al., 2010), and regulatory T cells (T reg cells; Clambey et al., 2012). MDSCs are a heterogeneous group of relatively immature myeloid cells and several studies have described mechanisms of MDSC-mediated immune suppression (Gabrilovich et al., 2012). A large body of preclinical and clinical data indicates that antibody blockade of immune checkpoints can significantly enhance antitumor immunity (Pardoll, 2012; West et al., 2013). Recently, antibody-mediated blockade of preprogrammed death 1 (PD-1; Topalian et al., 2012) and its ligand, PD-L1 (Brahmer et al., 2012), was shown to result in durable tumor regression and prolonged stabilization of disease in patients with advanced cancers. PD-1, a cell surface glycoprotein with a structure similar to cytotoxic T lymphocyte antigen 4 (CTLA-4), belongs to the B7 family of co-stimulatory/co-inhibitory molecules and plays a key part in immune regulation (Greenwald et al., 2005). PD-1 has two known ligands, PD-L1 (B7-H1) and PD-L2 (B7-DC). Although hypoxia has been shown to regulate the function and differentiation of MDSCs (Corzo et al., 2010), several major questions remain unresolved. The influence of hypoxia on the regulation of immune checkpoint receptors (PD-1 and CTLA-4) and their respective ligands (PD-L1, PD-L2, CD80, and CD86) on MDSCs remains largely obscure. Furthermore, the potential contribution of these immune checkpoint receptors and their respective ligands on MDSC function under hypoxia is still unknown. In the present study, we showed that hypoxia via hypoxia-inducible factor-1α (HIF-1α) selectively up-regulated PD-L1 on MDSCs, but not other B7 family members, by binding directly to the HRE in the PD-L1 proximal promoter. Blockade of PD-L1 under hypoxia abrogated MDSC-mediated T cell suppression by modulating MDSCs cytokine production. RESULTS AND DISCUSSION Differential expression of PD-L1 on tumor-infiltrating MDSCs versus splenic MDSCs and selective up-regulation of PD-L1 in splenic MDSCs under hypoxic stress We first compared the level of expression of PD-L1 and PD-L2 between splenic MDSCs and tumor-infiltrating MDSCs from tumor-bearing mice. We found that the percentage of PD-L1+ cells was significantly higher on tumor-infiltrating MDSCs as compared with splenic MDSC in B16-F10, LLC (Fig. 1 A), CT26, and 4T1 (Fig. 1 B) tumor models. No significant difference was found in the percentage of PD-L2+ cells in splenic MDSCs as compared with tumor-infiltrating MDSCs in four tumor models tested (Fig. 1 C). We did not observe any significant difference in the expression levels of other members of the B7 family such as CD80, CD86, PD-1, and CTLA-4 on MDSCs from spleen and tumor (unpublished data). Youn et al. (2008) previously observed no significant differences in the percentage of PD-L1+ or CD80+ cells within the splenic MDSCs from tumor-bearing mice and immature myeloid cells from naive tumor-free mice. However, by comparing the expression of immune checkpoint inhibitors between splenic and tumor-infiltrating MDSCs, we showed that there is a differential expression of PD-L1 on tumor-infiltrating MDSCs. Figure 1. Tumor-infiltrating MDSCs differentially express PD-L1 as compared with splenic MDSCs, and hypoxia selectively up-regulates PD-L1 on splenic MDSCs in tumor-bearing mice. Surface expression level of PD-L1 and PD-L2 on Gr1+ CD11b+ cells (MDSCs) from (B16-F10 and LLC; A; CT26 and 4T1; B) in spleens (black dotted line histogram) and tumor (black line histogram) as compared with isotype control (gray-shaded histogram) was analyzed by flow cytometry. (C) Statistically significant differences (indicated by asterisks) between tumor-infiltrating MDSCs and splenic MDSCs are shown (*, P 20 fold for HRE-4), comparable to their binding to an established HRE in VEGF, LDHA, and Glut1 genes. To determine whether this HIF-1α site (HRE-4) was a transcriptionally active HRE, MSC-1 cells were co-transfected with pGL4-hRluc/SV40 vector and pGL3 EV, pGL3 HRE-4, or pGL3 HRE-4 MUT vectors (Fig. 3 M) and grown under normoxia or hypoxia. After 48 h, firefly and renilla luciferase activities were measured. As shown in Fig. 3 N, hypoxia significantly increased the luciferase activity of HRE-4 reporter by more than threefold as compared with normoxia. More interestingly, the luciferase activity of HRE-4 MUT was significantly decreased (>50%) as compared with HRE-4 under hypoxia (Fig. 3 N). The results presented in Figs. 3 (H–N) demonstrate that PD-L1 is a direct HIF-1α target gene in MSC-1 cells. Thus, we provide evidence here that HIF-1α is a major regulator of PD-L1 mRNA and protein expression, and that HIF-1α regulates the expression of PD-L1 by binding directly to the HRE-4 in the PD-L1 proximal promoter. Blocking PD-L1 decreases MDSC-mediated T cell suppression under hypoxia by down-regulating MDSC IL-6 and IL-10 To directly test the functional consequences of hypoxia-induced up-regulation of PD-L1 in MDSC-mediated T cell suppression, the expression of PD-L1 was blocked on ex vivo MDSCs by using anti–PD-L1 monoclonal antibody. Hypoxia increased the ability of MDSCs to suppress both specific and nonspecific stimuli-mediated T cell proliferation (Fig. 4, A and B). Interestingly, blockade of PD-L1 under hypoxia significantly abrogated the suppressive activity of MDSCs in response to both nonspecific stimuli (anti-CD3/CD28 antibody; Fig. 4 A) and specific stimuli (TRP-2(180–88) peptide; Fig. 4 B). Under hypoxia, MDSCs acquired the ability to inhibit T cell function (Fig. 4, C and D) by decreasing the percentage of IFN-γ+ CD8+ and CD4+ T cells; whereas the percentage of IFN-γ+ CD8+ (Fig. 4 C) and IFN-γ+ CD4+ T cells (Fig. 4 D) significantly increased after PD-L1 blockade under hypoxic conditions. Thus, the immune suppressive function of MDSCs enhanced under hypoxia was abrogated after blocking PD-L1, and hypoxic up-regulation of PD-L1 on MDSCs is involved in mediating the suppressive action of MDSCs, at least in part, as we were not able to completely restore T cell proliferation and function after PD-L1 blockade on MDSCs under hypoxia. Figure 4. Blockade of PD-L1 under hypoxia down-regulates MDSC IL-6 and IL-10 and enhances T cell proliferation and function. MDSCs isolated from spleens of B16-F10 tumor-bearing mice were pretreated for 30 min on ice with 5 µg/ml control antibody (IgG) or antibody against PD-L1 (PDL1 Block) and co-cultured with splenocytes under normoxia and hypoxia for 72 h. (A and B) Effect of MDSC on proliferation of splenocytes stimulated with (A) anti-CD3/CD28 coated beads or (B) TRP-2(180–88) peptide under the indicated conditions. Cell proliferation was measured in triplicates by [3H]thymidine incorporation and expressed as counts per minute (CPM). (C and D) MDSCs were cultured with splenocytes from B16-F10 mice stimulated with anti-CD3/CD28. Intracellular IFN-γ production was evaluated by flow cytometry by gating on (C) CD3+CD8+ IFN-γ+ and (D) CD3+CD4+ IFN-γ+ populations. Statistically significant differences (indicated by asterisks) are shown (**, P 95% as evaluated by FACS analysis. MDSC functional assays. For evaluation of T cell proliferation, splenocytes from B16-F10 mice were plated into U-bottom 96-well plates along with MDSCs at different ratios (50,000 MDSC:200,000 splenocytes/well). Plates were stimulated with either anti-CD3/CD28 beads (Miltenyi Biotec) or TRP-2 180–88 peptide for 72 h at 37°C. Co-cultures were pulsed with thymidine (1 µCi/well; Promega) for 16–18 h before harvesting, and [3H]thymidine uptake was counted using Packard’s TopCount NXT liquid scintillation counter and expressed as counts per minute (CPM). For assessment of T cell functions, MDSCs co-cultured with splenocytes from B16-F10 mice were stimulated with anti-CD3/CD28 beads. After 72 h, intracellular IFN-γ production was evaluated by flow cytometry by gating on CD3+CD8+ IFN-γ+ and CD3+CD4+ IFN-γ+ populations. MDSCs cytokine production (ELISA). MDSCs isolated from spleens of B16-F10 tumor-bearing mice were pretreated for 30 min on ice with 5 μg/ml control antibody (IgG) or Anti-Mouse PD-L1 (B7-H1) Functional Grade Purified antibody 5 µg/ml (clone MIH5; eBioscience; PDL1 Block) and cultured under normoxia and hypoxia for 72 h. Supernatants were collected and the secretion of IL-6, IL-10, and IL-12p70 (eBioscience) was determined by ELISA. ChIP assay. ChIP was performed with lysates prepared from MSC-1 by using SimpleChIP Enzymatic Chromatin IP kit (Cell Signaling Technology). SYBR Green RT-qPCR was performed using the primers detailed in Table S1. Arginase enzymatic activity and NO (nitric oxide) production. Arginase activity was measured in MDSC cell lysates, and for NO production, culture supernatants were mixed with Greiss reagent and nitrite concentrations were determined as described earlier (Youn et al., 2008). Luciferase reporter assay. A 653-bp section corresponding to mouse PD-L1 promoter containing HRE4 sequence was inserted into the NheI–XhoI sites of pGL3-Basic vector (Promega). Mutation of HRE4 was performed by site-directed mutagenesis and verified by sequencing. A 56-bp mouse PD-L1 gene sequence was inserted into the Bgl II site of pGL3-Promoter (Promega). MSC-1 cells were co-transfected with 0.2 µg of pGL4-hRluc/SV40 vector (which contains renilla luciferase sequences downstream of the SV40 promoter) and 1 µg of pGL3 empty vector, pGL3 HRE-4, or pGL3 HRE-4 MUT vectors in 6-well plates with Lipofectamine 2000 (Invitrogen) in OPTIMEM (Invitrogen) medium and grown under normoxia or hypoxia. After 48 h, firefly and Renilla luciferase activities were measured using the Dual-Luciferase Reporter assay (Promega) and the ratio of firefly/Renilla luciferase was determined. Statistics. Data were analyzed with GraphPad Prism. Student’s t test was used for single comparisons. Online supplemental material. Table S1 shows genomic oligonucleotide primers used for amplification of immunoprecipitated DNA samples from ChIP assays. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20131916/DC1. Supplementary Material Supplemental Material
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer

            Background: PD-L1 (programmed cell death 1 ligand 1) on tumour cells suppresses host immunity through binding to its receptor PD-1 on lymphocytes, and promotes peritoneal dissemination in mouse models of ovarian cancer. However, how PD-L1 expression is regulated in ovarian cancer microenvironment remains unclear. Methods: The number of CD8-positive lymphocytes and PD-L1 expression in tumour cells was assessed in ovarian cancer clinical samples. PD-L1 expression and tumour progression in mouse models under conditions of altering IFN-γ signals was assessed. Results: The number of CD8-positive cells in cancer stroma was very high in peritoneally disseminated tumours, and was strongly correlated to PD-L1 expression on the tumour cells (P<0.001). In mouse models, depleting IFNGR1 (interferon-γ receptor 1) resulted in lower level of PD-L1 expression in tumour cells, increased the number of tumour-infiltrating CD8-positive lymphocytes, inhibition of peritoneal disseminated tumour growth and longer survival (P=0.02). The injection of IFN-γ into subcutaneous tumours induced PD-L1 expression and promoted tumour growth, and PD-L1 depletion completely abrogated tumour growth caused by IFN-γ injection (P=0.01). Conclusions: Interferon-γ secreted by CD8-positive lymphocytes upregulates PD-L1 on ovarian cancer cells and promotes tumour growth. The lymphocyte infiltration and the IFN-γ status may be the key to effective anti-PD-1 or anti-PD-L1 therapy in ovarian cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.

              Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                27 March 2017
                2017
                : 8
                : 14754
                Affiliations
                [1 ]The University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15213, USA
                [2 ]Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15213, USA
                [3 ]Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15213, USA
                Author notes
                Article
                ncomms14754
                10.1038/ncomms14754
                5378974
                28345650
                620b6201-9040-41e6-9afe-2ac048358b05
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 July 2016
                : 27 January 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article