53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Integrating oncolytic viruses in combination cancer immunotherapy

      , ,
      Nature Reviews Immunology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d158885e95">Oncolytic viruses can be usefully integrated into tumour immunotherapies, as they target multiple steps within the cancer-immunity cycle. Oncolytic viruses directly lyse tumour cells, leading to the release of soluble antigens, danger signals and type I interferons, which drive antitumour immunity. In addition, some oncolytic viruses can be engineered to express therapeutic genes or can functionally alter tumour-associated endothelial cells, further enhancing T cell recruitment into immune-excluded or immune-deserted tumour microenvironments. Oncolytic viruses can also utilize established tumours as an in situ source of neoantigen vaccination through cross-presentation, resulting in regression of distant, uninfected tumours. These features make oncolytic viruses attractive agents for combination strategies to optimize cancer immunotherapy. </p>

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.

          The Cancer Genome Atlas revealed the genomic landscapes of human cancers. In parallel, immunotherapy is transforming the treatment of advanced cancers. Unfortunately, the majority of patients do not respond to immunotherapy, making the identification of predictive markers and the mechanisms of resistance an area of intense research. To increase our understanding of tumor-immune cell interactions, we characterized the intratumoral immune landscapes and the cancer antigenomes from 20 solid cancers and created The Cancer Immunome Atlas (https://tcia.at/). Cellular characterization of the immune infiltrates showed that tumor genotypes determine immunophenotypes and tumor escape mechanisms. Using machine learning, we identified determinants of tumor immunogenicity and developed a scoring scheme for the quantification termed immunophenoscore. The immunophenoscore was a superior predictor of response to anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) and anti-programmed cell death protein 1 (anti-PD-1) antibodies in two independent validation cohorts. Our findings and this resource may help inform cancer immunotherapy and facilitate the development of precision immuno-oncology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity.

            Although in vitro observations suggest that cross-presentation of antigens is mediated primarily by CD8alpha+ dendritic cells, in vivo analysis has been hampered by the lack of systems that selectively eliminate this cell lineage. We show that deletion of the transcription factor Batf3 ablated development of CD8alpha+ dendritic cells, allowing us to examine their role in immunity in vivo. Dendritic cells from Batf3-/- mice were defective in cross-presentation, and Batf3-/- mice lacked virus-specific CD8+ T cell responses to West Nile virus. Importantly, rejection of highly immunogenic syngeneic tumors was impaired in Batf3-/- mice. These results suggest an important role for CD8alpha+ dendritic cells and cross-presentation in responses to viruses and in tumor rejection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors.

              Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8(+) T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-? production and dendritic cell activation were triggered by tumor-cell-derived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-? production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                August 2018
                May 9 2018
                August 2018
                : 18
                : 8
                : 498-513
                Article
                10.1038/s41577-018-0014-6
                29743717
                50960ceb-c23b-4d6b-8c63-e35742cc0e9d
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article