0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      2D Materials for Photothermoelectric Detectors: Mechanisms, Materials, and Devices

      1 , 1 , 1 , 2
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          2D materials, with outstanding optical, thermal, and electric properties, are emerging as promising candidates for fabricating high‐performance photodetectors. Recently, impressive progresses have been made in this area and some challenges are remaining to improve the properties of photodetectors. As one important part in the mainstream photodetection mechanisms, photothermoelectric (PTE) effect is showing unique priorities in fabricating advanced photodetectors, especially broadband detection operating in the mid‐infrared and terahertz spectral regime. Here, recent progress on PTE photodetectors based on layered 2D materials is reviewed. The physical mechanism of PTE effect is first discussed and then the optical and thermoelectric properties of various 2D materials are analyzed. Furthermore, strategies to improve the photodetection performance of PTE detectors are summarized in two major categories including enhanced photothermal conversion and thermoelectric conversion processes. Finally, the challenges and prospects for future research in 2D thermoelectric materials and PTE detectors are also provided.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Black phosphorus field-effect transistors

            Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Two-dimensional material nanophotonics

                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                May 2024
                January 26 2024
                May 2024
                : 34
                : 21
                Affiliations
                [1 ] School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
                [2 ] School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
                Article
                10.1002/adfm.202312872
                61d7a26c-1fff-4b45-955e-ae9ce9226182
                © 2024

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article