62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Flow-enhanced vascularization and maturation of kidney organoids in vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney organoids derived from human pluripotent stem cells exhibit glomerular- and tubular-like compartments that are largely avascular and immature in static culture. Here, we report an in vitro method for culturing kidney organoids under flow on millifluidic chips, which greatly expands their endogenous pool of endothelial progenitor cells (EPCs) and generates vascular networks with perfusable lumens surrounded by mural cells. Vascularized kidney organoids cultured under flow exhibit more mature podocyte and tubular compartments with enhanced cellular polarity and adult gene expression, compared to static controls. However, the association of vessels with these compartments is reduced upon disrupting the endogenous VEGF gradient. Glomerular vascular development progresses through intermediate stages akin to the embryonic mammalian kidney’s formation of capillary loops abutting foot processes. The ability to induce substantial vascularization and morphological maturation of kidney organoids in vitro under flow opens new avenues for studying kidney development, disease, and regeneration.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis.

          The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Computational Tool for Quantitative Analysis of Vascular Networks

            Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time - and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called “branching index” (branch points / unit area), providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nephron organoids derived from human pluripotent stem cells model kidney development and injury

              Kidney cells and tissues derived from human pluripotent stem cells (hPSCs) would enable organ regeneration, disease modeling, and drug screening in vitro. We established an efficient, chemically defined protocol for differentiating hPSCs into multipotent nephron progenitor cells (NPCs) that can form nephron-like structures. By recapitulating metanephric kidney development in vitro, we generate SIX2+SALL1+WT1+PAX2+ NPCs with 90% efficiency within 9 days of differentiation. The NPCs possess the developmental potential of their in vivo counterparts and form PAX8+LHX1+ renal vesicles that self-pattern into nephron structures. In both 2D and 3D culture, NPCs form kidney organoids containing epithelial nephron-like structures expressing markers of podocytes, proximal tubules, loops of Henle, and distal tubules in an organized, continuous arrangement that resembles the nephron in vivo. We also show that this organoid culture system can be used to study mechanisms of human kidney development and toxicity.
                Bookmark

                Author and article information

                Journal
                101215604
                32338
                Nat Methods
                Nat. Methods
                Nature methods
                1548-7091
                1548-7105
                25 December 2018
                11 February 2019
                March 2019
                11 August 2019
                : 16
                : 3
                : 255-262
                Affiliations
                [1 ]Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
                [2 ]Renal Division, Brigham and Women’s Hospital, Boston, MA, USA
                [3 ]Harvard Stem Cell Institute, Cambridge, MA, USA
                [4 ]Department of Medicine, Harvard Medical School, Boston, MA, USA
                Author notes

                Author Contributions

                K.A.H. and N.G. together with J.A.L, R.M., D.B.K, and J.V.B. conceived the project and they and K.T.K designed the research. R.M. and J.A.L supervised the research. K.A.H., N.G., K.T.K., R.M. and D.B.K designed, performed, and analyzed all experiments. M.T.V provided critical insights into embryonic development, cell sources, and mouse embryonic kidneys. M.S.S. designed and built the silicone millifluidic chips, interfacing with perfusion pumps, and analyzed the fluid flow profiles on chip. D.M. and T.M. sourced and validated antibodies, optimized staining protocols, and provided invaluable cell culture analysis and support. T.F. developed methodology for quantifying vascular and tubule features in confocal imaging stacks. All authors contributed to writing the manuscript.

                [* ]Corresponding Authors
                Article
                NIHMS1517344
                10.1038/s41592-019-0325-y
                6488032
                30742039
                61d4df98-e267-4722-98ff-4d2632f4468e

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Life sciences
                Life sciences

                Comments

                Comment on this article