78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ebola Virion Attachment and Entry into Human Macrophages Profoundly Effects Early Cellular Gene Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP 1,2) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP 1,2 (VLP VP40-GP) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLP VP40 (particles lacking GP 1,2) caused an aberrant response. This suggests that GP 1,2 binding to macrophages plays an important role in the immediate cellular response.

          Author Summary

          Ebola virus causes a severe hemorrhagic fever syndrome in man with high case-fatality rates. Following infection, monocytes and macrophages are among the first cells targeted by the virus. These cells respond by increasing expression of inflammatory cytokines and chemokines that contribute towards pathogenesis. In order to more thoroughly characterize the host response to Ebola infection, primary human macrophages were infected with Zaire ebolavirus and samples harvested for transcriptional changes after 1 or 6 hours post infection. Whereas previous studies have analyzed a relatively small subset of host genes, this study examined the transcriptional profile of over 10,000 genes and employed rigorous pathway analyses to the datasets. Ebola virus was found to significantly regulate the expression of over 88 host genes. These changes occurred within the first hours of infection. Subsequent experiments demonstrated that virus replication was not necessary for activation. Indeed, noninfectious virus-like particles expressing the ebolavirus glycoprotein and matrix proteins were sufficient stimuli to induce activation.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Cluster analysis and display of genome-wide expression patterns.

          A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

            Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection.

              Ebola virus (EBOV) infection causes a severe and fatal hemorrhagic disease that in many ways appears to be similar in humans and nonhuman primates; however, little is known about the development of EBOV hemorrhagic fever. In the present study, 21 cynomolgus monkeys were experimentally infected with EBOV and examined sequentially over a 6-day period to investigate the pathological events of EBOV infection that lead to death. Importantly, dendritic cells in lymphoid tissues were identified as early and sustained targets of EBOV, implicating their important role in the immunosuppression characteristic of EBOV infections. Bystander lymphocyte apoptosis, previously described in end-stage tissues, occurred early in the disease-course in intravascular and extravascular locations. Of note, apoptosis and loss of NK cells was a prominent finding, suggesting the importance of innate immunity in determining the fate of the host. Analysis of peripheral blood mononuclear cell gene expression showed temporal increases in tumor necrosis factor-related apoptosis-inducing ligand and Fas transcripts, revealing a possible mechanism for the observed bystander apoptosis, while up-regulation of NAIP and cIAP2 mRNA suggest that EBOV has evolved additional mechanisms to resist host defenses by inducing protective transcripts in cells that it infects. The sequence of pathogenetic events identified in this study should provide new targets for rational prophylactic and chemotherapeutic interventions.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2011
                18 October 2011
                : 5
                : 10
                : e1359
                Affiliations
                [1 ]Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
                [2 ]National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
                [3 ]Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
                [4 ]The Scripps Research Institute, La Jolla, California, United States of America
                [5 ]Integrated Research Facility at Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
                [6 ]School of Math, Science and Engineering, Southwestern College, Chula Vista, California, United States of America
                [7 ]Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Portland, Oregon, United States of America
                [8 ]IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
                [9 ]Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
                University of Texas Medical Branch at Galveston, United States of America
                Author notes

                Conceived and designed the experiments: VWJ SK DRB HF. Performed the experiments: VWJ SK FF HF. Analyzed the data: VWJ SK LKB JK VD JdSC KF JHK DRB HF. Contributed reagents/materials/analysis tools: VWJ SK FF LKB JK VD JdSC KF DRB HF. Wrote the paper: VWJ SK JK JHK HF.

                Article
                PNTD-D-11-00649
                10.1371/journal.pntd.0001359
                3196478
                22028943
                61960ae7-aaa1-4c23-add1-fd36dafafea3
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 7 July 2011
                : 1 September 2011
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Genomics
                Immunology
                Microbiology
                Medicine
                Infectious Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article