33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long-duration bed rest as an analog to microgravity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-duration bed rest is widely employed to simulate the effects of microgravity on various physiological systems, especially for studies of bone, muscle, and the cardiovascular system. This microgravity analog is also extensively used to develop and test countermeasures to microgravity-altered adaptations to Earth gravity. Initial investigations of bone loss used horizontal bed rest with the view that this model represented the closest approximation to inactivity and minimization of hydrostatic effects, but all Earth-based analogs must contend with the constant force of gravity by adjustment of the G vector. Later concerns about the lack of similarity between headward fluid shifts in space and those with horizontal bed rest encouraged the use of 6 degree head-down tilt (HDT) bed rest as pioneered by Russian investigators. Headward fluid shifts in space may redistribute bone from the legs to the head. At present, HDT bed rest with normal volunteers is the most common analog for microgravity simulation and to test countermeasures for bone loss, muscle and cardiac atrophy, orthostatic intolerance, and reduced muscle strength/exercise capacity. Also, current physiologic countermeasures are focused on long-duration missions such as Mars, so in this review we emphasize HDT bed rest studies with durations of 30 days and longer. However, recent results suggest that the HDT bed rest analog is less representative as an analog for other important physiological problems of long-duration space flight such as fluid shifts, spinal dysfunction and radiation hazards.

          Related collections

          Author and article information

          Journal
          J. Appl. Physiol.
          Journal of applied physiology (Bethesda, Md. : 1985)
          American Physiological Society
          1522-1601
          0161-7567
          Apr 15 2016
          : 120
          : 8
          Affiliations
          [1 ] Department of Orthopaedic Surgery, University of California, San Diego, San Diego, California; and Institut National de la Santé et de la Recherche Médicale Unité 1059, University of Lyon, St-Etienne, France ahargens@ucsd.edu.
          [2 ] Department of Orthopaedic Surgery, University of California, San Diego, San Diego, California; and Institut National de la Santé et de la Recherche Médicale Unité 1059, University of Lyon, St-Etienne, France.
          Article
          japplphysiol.00935.2015
          10.1152/japplphysiol.00935.2015
          26893033
          600c1c22-e112-418b-9adb-26fb96bef77b
          History

          bed rest,bone,muscle,simulated microgravity,space flight
          bed rest, bone, muscle, simulated microgravity, space flight

          Comments

          Comment on this article