5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Impact of Lung Microbiota on COPD

      , , , , ,
      Biomedicines
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is a fine balance in maintaining healthy microbiota composition, and its alterations due to genetic, lifestyle, and environmental factors can lead to the onset of respiratory dysfunctions such as chronic obstructive pulmonary disease (COPD). The relationship between lung microbiota and COPD is currently under study. Little is known about the role of the microbiota in patients with stable or exacerbated COPD. Inflammation in COPD disorders appears to be characterised by dysbiosis, reduced lung activity, and an imbalance between the innate and adaptive immune systems. Lung microbiota intervention could ameliorate these disorders. The microbiota’s anti-inflammatory action could be decisive in the onset of pathologies. In this review, we highlight the feedback loop between microbiota dysfunction, immune response, inflammation, and lung damage in relation to COPD status in order to encourage the development of innovative therapeutic goals for the prevention and management of this disease.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Role of the microbiota in immunity and inflammation.

          The microbiota plays a fundamental role on the induction, training, and function of the host immune system. In return, the immune system has largely evolved as a means to maintain the symbiotic relationship of the host with these highly diverse and evolving microbes. When operating optimally, this immune system-microbiota alliance allows the induction of protective responses to pathogens and the maintenance of regulatory pathways involved in the maintenance of tolerance to innocuous antigens. However, in high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses. This phenomenon is proposed to account for some of the dramatic rise in autoimmune and inflammatory disorders in parts of the world where our symbiotic relationship with the microbiota has been the most affected. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interaction between microbiota and immunity in health and disease

            The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global burden of COPD.

              It is estimated that the world population will reach a record 7.3 billion in 2015, and the high burden of chronic conditions associated with ageing and smoking will increase further. Respiratory diseases in general receive little attention and funding in comparison with other major causes of global morbidity and mortality. In particular, chronic obstructive pulmonary disease (COPD) has been a major public health problem and will remain a challenge for clinicians within the 21st century. Worldwide, COPD is in the spotlight, since its high prevalence, morbidity and mortality create formidable challenges for health-care systems. This review emphasizes the magnitude of the COPD problem from a clinician's standpoint by drawing extensively from the new findings of the Global Burden of Disease study. Updated, distilled information on the population distribution of COPD is useful for the clinician to help provide an appreciation of the relative impact of COPD in daily practice compared with other chronic conditions, and to allocate minimum resources in anticipation of future needs in care. Despite recent trends in reduction of COPD standardized mortality rates and some recent successes in anti-smoking efforts in a number of Western countries, the overarching demographic impact of ageing in an ever-expanding world population, joined with other factors such as high rates of smoking and air pollution in Asia, will ensure that COPD will continue to pose an ever-increasing problem well into the 21st century.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                June 2022
                June 06 2022
                : 10
                : 6
                : 1337
                Article
                10.3390/biomedicines10061337
                9219765
                35740358
                5fe3ee4e-1d7e-4eb8-acec-ccfc729c5c91
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article