Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-wave infrared photothermoelectric detectors with ultrahigh polarization sensitivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Filter-free miniaturized polarization-sensitive photodetectors have important applications in the next-generation on-chip polarimeters. However, their polarization sensitivity is thus far limited by the intrinsic low diattenuation and inefficient photon-to-electron conversion. Here, we implement experimentally a miniaturized detector based on one-dimensional tellurium nanoribbon, which can significantly improve the photothermoelectric responses by translating the polarization-sensitive absorption into a large temperature gradient together with the finite-size effect of a perfect plasmonic absorber. Our devices exhibit a zero-bias responsivity of 410 V/W and an ultrahigh polarization ratio (2.5 × 10 4), as well as a peak polarization angle sensitivity of 7.10 V/W•degree, which is one order of magnitude higher than those reported in the literature. Full linear polarimetry detection is also achieved with the proposed device in a simple geometrical configuration. Polarization-coded communication and optical strain measurement are demonstrated showing the great potential of the proposed devices. Our work presents a feasible solution for miniaturized room-temperature infrared photodetectors with ultrahigh polarization sensitivity.

          Abstract

          Infrared polarization-sensitive photodetectors are attractive owing to their widespread applications. Here, the authors report a long-wave infrared photodetector with an ultrahigh polarization sensitivity by leveraging the 1D geometry of Tellurium nanoribbon and the finite-size effect of a perfect plasmonic absorber.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Infrared perfect absorber and its application as plasmonic sensor.

          We experimentally demonstrate a perfect plasmonic absorber at lambda = 1.6 microm. Its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees. We introduce a novel concept to utilize this perfect absorber as plasmonic sensor for refractive index sensing. This sensing strategy offers great potential to maintain the performance of localized surface plasmon sensors even in nonlaboratory environments due to its simple and robust measurement scheme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction

            The ability to detect light over a broad spectral range is central to practical optoelectronic applications and has been successfully demonstrated with photodetectors of two-dimensional layered crystals such as graphene and MoS2. However, polarization sensitivity within such a photodetector remains elusive. Here, we demonstrate a broadband photodetector using a layered black phosphorus transistor that is polarization-sensitive over a bandwidth from ∼400 nm to 3,750 nm. The polarization sensitivity is due to the strong intrinsic linear dichroism, which arises from the in-plane optical anisotropy of this material. In this transistor geometry, a perpendicular built-in electric field induced by gating can spatially separate the photogenerated electrons and holes in the channel, effectively reducing their recombination rate and thus enhancing the performance for linear dichroism photodetection. The use of anisotropic layered black phosphorus in polarization-sensitive photodetection might provide new functionalities in novel optical and optoelectronic device applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Broadband high photoresponse from pure monolayer graphene photodetector.

              Graphene has attracted large interest in photonic applications owing to its promising optical properties, especially its ability to absorb light over a broad wavelength range, which has lead to several studies on pure monolayer graphene-based photodetectors. However, the maximum responsivity of these photodetectors is below 10 mA W(-1), which significantly limits their potential for applications. Here we report high photoresponsivity (with high photoconductive gain) of 8.61 A W(-1) in pure monolayer graphene photodetectors, about three orders of magnitude higher than those reported in the literature, by introducing electron trapping centres and by creating a bandgap in graphene through band structure engineering. In addition, broadband photoresponse with high photoresponsivity from the visible to the mid-infrared is experimentally demonstrated. To the best of our knowledge, this work demonstrates the broadest photoresponse with high photoresponsivity from pure monolayer graphene photodetectors, proving the potential of graphene as a promising material for efficient optoelectronic devices.
                Bookmark

                Author and article information

                Contributors
                luoyu@ntu.edu.sg
                qjwang@ntu.edu.sg
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                9 June 2023
                9 June 2023
                2023
                : 14
                : 3421
                Affiliations
                [1 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, School of Electrical and Electronic Engineering, , Nanyang Technological University, ; Singapore, 639798 Singapore
                [2 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, , Nanyang Technological University, ; Singapore, 637371 Singapore
                Author information
                http://orcid.org/0000-0003-2925-682X
                http://orcid.org/0000-0002-9910-1455
                Article
                39071
                10.1038/s41467-023-39071-7
                10256712
                37296149
                5f8e466a-4233-4357-b373-c63a60e9374f
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 October 2022
                : 22 May 2023
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2023

                Uncategorized
                sensors,metamaterials
                Uncategorized
                sensors, metamaterials

                Comments

                Comment on this article