30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemic stroke is the third cause of death in the developed countries and the main reason of severe disability. Brain ischemia leads to the production of damage-associated molecular patterns (DAMPs) by neurons and glial cells which results in astrocyte and microglia activation, pro-inflammatory cytokines and chemokines production, blood-brain barrier (BBB) disruption, infiltration of leukocytes from the peripheral blood into the infarcted area, and further exacerbation of tissue damage. However, some immune cells such as microglia or monocytes are capable to change their phenotype to anti-inflammatory, produce anti-inflammatory cytokines, and protect injured nervous tissue. In this situation, therapies, which will modulate the immune response after brain ischemia, such as transplantation of mesenchymal stem cells (MSCs) are catching interest. Many experimental studies of ischemic stroke revealed that MSCs are able to modulate immune response and act neuroprotective, through stimulation of neurogenesis, oligodendrogenesis, astrogenesis, and angiogenesis. MSCs may also have an ability to replace injured cells, but the release of paracrine factors directly into the environment or via extracellular vesicles (EVs) seems to play the most pronounced role. EVs are membrane structures containing proteins, lipids, and nucleic acids, and they express similar properties as the cells from which they are derived. However, EVs have lower immunogenicity, do not express the risk of vessel blockage, and have the capacity to cross the blood-brain barrier. Experimental studies of ischemic stroke showed that EVs have immunomodulatory and neuroprotective properties; therefore, they can stimulate neurogenesis and angiogenesis. Up to now, 20 clinical trials with MSC transplantation into patients after stroke were performed, from which two concerned on only hemorrhagic stroke and 13 studied only on ischemic stroke. There is no clinical trial with EV injection into patients after brain ischemia so far, but the case with miR-124-enriched EVs administration is planned and probably there will be more clinical studies with EV transplantation in the near future.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Temporal and spatial dynamics of cerebral immune cell accumulation in stroke.

          Ischemic stroke leads to significant morbidity and mortality in the Western world. Early reperfusion strategies remain the treatment of choice but can initiate and augment an inflammatory response causing secondary brain damage. The understanding of postischemic inflammation is very limited. The objectives of this study were to define the temporal and spatial infiltration of immune cell populations and their activation patterns in a murine cerebral ischemia-reperfusion injury model. Transient middle cerebral artery occlusion was induced for 1 hour followed by 12-hour to 7-day reperfusion in C57/BL6 mice. Immunohistochemistry and flow cytometry were used to quantify the infiltrating immune cell subsets. Accumulation of microglia and infiltration of the ischemic hemisphere by macrophages, lymphocytes, and dendritic cells (DCs) preceded the neutrophilic influx. DCs were found to increase 20-fold and constituted a substantial proportion of infiltrating cells. DCs exhibited a significant upregulation of major histocompatibility complex II and major histocompatibility complex II high-expressing DCs were found 100 times more abundant than in sham conditions. Upregulation of the costimulatory molecule CD80 was observed in DCs and microglial cells but did not further increase in major histocompatibility complex II high-expressing DCs. No lymphocyte activation was observed. Additionally, regulatory immune cells (natural killer T-cells, CD4(-)/CD8(-)T lymphocytes) cumulated in the ischemic hemisphere. This study provides a detailed analysis of the temporal dynamics of immune cell accumulation in a rodent stroke model. The peculiar activation pattern and massive increase of antigen-presenting cells in temporal conjunction with regulatory cells might provide additional insight into poststroke immune regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.

            Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes. Copyright © 2012 AlphaMed Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury.

              Lymphocyte recruitment and activation have been implicated in the progression of cerebral ischemia-reperfusion (I/R) injury, but the roles of specific lymphocyte subpopulations and cytokines during stroke remain to be clarified. Here we demonstrate that the infiltration of T cells into the brain, as well as the cytokines interleukin-23 (IL-23) and IL-17, have pivotal roles in the evolution of brain infarction and accompanying neurological deficits. Blockade of T cell infiltration into the brain by the immunosuppressant FTY720 reduced I/R-induced brain damage. The expression of IL-23, which was derived mostly from infiltrated macrophages, increased on day 1 after I/R, whereas IL-17 levels were elevated after day 3, and this induction of IL-17 was dependent on IL-23. These data, together with analysis of mice genetically disrupted for IL-17 and IL-23, suggest that IL-23 functions in the immediate stage of I/R brain injury, whereas IL-17 has an important role in the delayed phase of I/R injury during which apoptotic neuronal death occurs in the penumbra. Intracellular cytokine staining revealed that gammadeltaT lymphocytes, but not CD4(+) helper T cells, were a major source of IL-17. Moreover, depletion of gammadeltaT lymphocytes ameliorated the I/R injury. We propose that T lymphocytes, including gammadeltaT lymphocytes, could be a therapeutic target for mitigating the inflammatory events that amplify the initial damage in cerebral ischemia.
                Bookmark

                Author and article information

                Contributors
                s.koniusz@gmail.com
                aandrzejewska_biol@wp.pl
                barbara.lukomska@imdik.pan.pl
                (443) 287 8461 , neuroibis@gmail.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                12 September 2019
                12 September 2019
                2019
                : 16
                : 178
                Affiliations
                [1 ]ISNI 0000 0004 0620 8558, GRID grid.415028.a, NeuroRepair Department, , Mossakowski Medical Research Centre, PAS, ; 5 Pawinskiego Street, 02-106 Warsaw, Poland
                [2 ]ISNI 0000 0001 2175 4264, GRID grid.411024.2, Department of Diagnostic Radiology and Nuclear Medicine, , University of Maryland, Baltimore, ; HSF III, 620 W. Baltimore street, Baltimore, MD 21201 USA
                Author information
                http://orcid.org/0000-0001-5261-7975
                Article
                1571
                10.1186/s12974-019-1571-8
                6743114
                31514749
                5ed42b40-cc58-414e-b94e-644af5d8ab17
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 March 2019
                : 29 August 2019
                Funding
                Funded by: National Institute of Neurological Disorders and Stroke (US)
                Award ID: R01NS091100
                Award Recipient :
                Funded by: MS&HE
                Award ID: KNOW 06
                Award Recipient :
                Funded by: NCBiR
                Award ID: STRATEGMED1/235773/19/NCBR/2016
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2019

                Neurosciences
                stroke,ischemia,neuro-inflammation,mesenchymal stem cells,extracellular vesicles
                Neurosciences
                stroke, ischemia, neuro-inflammation, mesenchymal stem cells, extracellular vesicles

                Comments

                Comment on this article