3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary supplementation with Tolypocladium sinense mycelium prevents dyslipidemia inflammation in high fat diet mice by modulation of gut microbiota in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Obesity is a risk factor for many serious health problems, associated with inflammation, hyperlipidemia, and gut dysbiosis. Prevention of obesity is especially important for human health. Tolypocladium sinense is one of the fungi isolated from Chinese caterpillar fungus, which is a traditional Chinese medicine with putative gut microbiota modulation effects. Here, we established a high-fat diet (HFD)-induced hyperlipidemia mice model, which was supplemented with lyophilized T. sinense mycelium (TSP) daily to evaluate its anti-obesity effects. The results indicated that TSP supplementation can effectively alleviate the inflammatory response and oxidative stress levels caused by obesity. TSP significantly prevented obesity and suppressed dyslipidemia by regulating the expression of lipid metabolism genes in the liver. TSP is also effective in preventing the HFD-induced decline in short-chain fatty acid (SCFA) content. Gut microbiota profiling showed that TSP supplementation reversed HFD diet-induced bacterial abundance and also altered the metabolic pathways of functional microorganisms, as revealed by KEGG analysis. It is noteworthy that, correlation analysis reveals the up-regulated gut microbiota ( Lactobacillus and Prevotella_9) are closely correlated with lipid metabolism parameters, gene expression of liver lipid metabolism and inflammatory. Additionally, the role of TSP in the regulation of lipid metabolism was reconfirmed by fecal microbiota transplantation. To sum up, our results provide the evidence that TSP may be used as prebiotic agents to prevent obesity by altering the gut microbiota, alleviating the inflammatory response and regulating gene expression of liver lipid metabolism.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Metagenomic biomarker discovery and explanation

          This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UPARSE: highly accurate OTU sequences from microbial amplicon reads.

            Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An obesity-associated gut microbiome with increased capacity for energy harvest.

              The worldwide obesity epidemic is stimulating efforts to identify host and environmental factors that affect energy balance. Comparisons of the distal gut microbiota of genetically obese mice and their lean littermates, as well as those of obese and lean human volunteers have revealed that obesity is associated with changes in the relative abundance of the two dominant bacterial divisions, the Bacteroidetes and the Firmicutes. Here we demonstrate through metagenomic and biochemical analyses that these changes affect the metabolic potential of the mouse gut microbiota. Our results indicate that the obese microbiome has an increased capacity to harvest energy from the diet. Furthermore, this trait is transmissible: colonization of germ-free mice with an 'obese microbiota' results in a significantly greater increase in total body fat than colonization with a 'lean microbiota'. These results identify the gut microbiota as an additional contributing factor to the pathophysiology of obesity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                07 November 2022
                2022
                : 13
                : 977528
                Affiliations
                [1] 1 Department of Medical Technology, Qiqihar Medical University , Qiqihar, Heilongjiang, China
                [2] 2 National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University , Changchun, China
                Author notes

                Edited by: Giulia Carla Marchetti, University of Milan, Italy

                Reviewed by: Wu Li, Wuyi University, China; Huaxi Yu, Ocean University of China, China

                *Correspondence: Haitao Yu, yht422@ 123456126.com ; Xia Chen, chenxiajlu@ 123456163.com ; Chunjing Zhang, cjzhang2005@ 123456163.com

                †These authors have contributed equally to this work and share first authorship

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.977528
                9677100
                36420262
                5ecd7fd2-71a7-4b74-a7cb-d4924171212e
                Copyright © 2022 Wang, Li, Bai, Zhao, Sun, Gao, Yu, Chen and Zhang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 June 2022
                : 19 October 2022
                Page count
                Figures: 10, Tables: 1, Equations: 0, References: 82, Pages: 18, Words: 7583
                Categories
                Immunology
                Original Research

                Immunology
                tolypocladium sinense,gut microbiome,dyslipidemia,inflammation,obesity
                Immunology
                tolypocladium sinense, gut microbiome, dyslipidemia, inflammation, obesity

                Comments

                Comment on this article