There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Caveolin-1, the primary coat protein of caveolae, has been implicated as a regulator
of signal transduction through binding of its "scaffolding domain" to key signaling
molecules. However, the physiological importance of caveolin-1 in regulating signaling
has been difficult to distinguish from its traditional functions in caveolae assembly,
transcytosis, and cholesterol transport. To directly address the importance of the
caveolin scaffolding domain in vivo, we generated a chimeric peptide with a cellular
internalization sequence fused to the caveolin-1 scaffolding domain (amino acids 82-101).
The chimeric peptide was efficiently taken up into blood vessels and endothelial cells,
resulting in selective inhibition of acetylcholine (Ach)-induced vasodilation and
nitric oxide (NO) production, respectively. More importantly, systemic administration
of the peptide to mice suppressed acute inflammation and vascular leak to the same
extent as a glucocorticoid or an endothelial nitric oxide synthase (eNOS) inhibitor.
These data imply that the caveolin-1 scaffolding domain can selectively regulate signal
transduction to eNOS in endothelial cells and that small-molecule mimicry of this
domain may provide a new therapeutic approach.
Nitric oxide (NO), a potent vasodilator produced by endothelial cells, is thought to be the endothelium-dependent relaxing factor (EDRF) which mediates vascular relaxation in response to acetylcholine, bradykinin and substance P in many vascular beds. NO has been implicated in the regulation of blood pressure and regional blood flow, and also affects vascular smooth-muscle proliferation and inhibits platelet aggregation and leukocyte adhesion. Abnormalities in endothelial production of NO occur in atherosclerosis, diabetes and hypertension. Pharmacological blockade of NO production with arginine analogues such as L-nitroarginine (L-NA) or L-N-arginine methyl ester affects multiple isoforms of nitric oxide synthase (NOS), and so cannot distinguish their physiological roles. To study the role of endothelial NOS (eNOS) in vascular function, we disrupted the gene encoding eNOS in mice. Endothelium-derived relaxing factor activity, as assayed by acetylcholine-induced relaxation, is absent, and the eNOS mutant mice are hypertensive. Thus eNOS mediates basal vasodilation. Responses to NOS blockade in the mutant mice suggest that non-endothelial isoforms of NOS may be involved in maintaining blood pressure.
We tested the hypothesis that endothelial nitric oxide synthase (eNOS) modulates angiogenesis in two animal models in which therapeutic angiogenesis has been characterized as a compensatory response to tissue ischemia. We first administered L-arginine, previously shown to augment endogenous production of NO, to normal rabbits with operatively induced hindlimb ischemia. Angiogenesis in the ischemic hindlimb was significantly improved by dietary supplementation with L-arginine, compared to placebo-treated controls; angiographically evident vascularity in the ischemic limb, hemodynamic indices of limb perfusion, capillary density, and vasomotor reactivity in the collateral vessel-dependent ischemic limb were all improved by oral L-arginine supplementation. A murine model of operatively induced hindlimb ischemia was used to investigate the impact of targeted disruption of the gene encoding for ENOS on angiogenesis. Angiogenesis in the ischemic hindlimb was significantly impaired in eNOS-/- mice versus wild-type controls evaluated by either laser Doppler flow analysis or capillary density measurement. Impaired angiogenesis in eNOS-/- mice was not improved by administration of vascular endothelial growth factor (VEGF), suggesting that eNOS acts downstream from VEGF. Thus, (a) eNOS is a downstream mediator for in vivo angiogenesis, and (b) promoting eNOS activity by L-arginine supplementation accelerates in vivo angiogenesis. These findings suggest that defective endothelial NO synthesis may limit angiogenesis in patients with endothelial dysfunction related to atherosclerosis, and that oral L-arginine supplementation constitutes a potential therapeutic strategy for accelerating angiogenesis in patients with advanced vascular obstruction.
We have recently reported that a 16-amino acid long polypeptide corresponding to the third helix of the DNA binding domain (homeodomain) of Antennapedia, a Drosophila transcription factor, is internalized by cells in culture (Derossi, D., Joliot, A. H., Chassaing, G., and Prochiantz, A.(1994) J. Biol. Chem. 269, 10444-10450). The capture of the homeodomain and of its third helix at temperatures below 10 degrees C raised the problem of the mechanism of internalization. The present demonstration, that a reverse helix and a helix composed of D-enantiomers still translocate across biological membranes at 4 and 37 degrees C strongly suggests that the third helix of the homeodomain is internalized by a receptor-independent mechanism. The finding that introducing 1 or 3 prolines in the structure does not hamper internalization also demonstrates that the alpha-helical structure is not necessary. The data presented are compatible with a translocation process based on the establishment of direct interactions with the membrane phospholipids. The third helix of the homeodomain has been used successfully to address biologically active substances to the cytoplasm and nucleus of cells in culture (Théodore, L., Derossi, D., Chassaing, G., Llirbat, B., Kubes, M., Jordan, P., Chneiweiss, H., Godement, P., and Prochiantz, A.(1995) J. Neurosci. 15, 7158-7167). Therefore, in addition to their physiological implications (Prochiantz, A., and Théodore, L.(1995) BioEssays 17, 39-45), the present results open the way to the molecular design of cellular vectors.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.