Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circular RNA circCCDC9 acts as a miR-6792-3p sponge to suppress the progression of gastric cancer through regulating CAV1 expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          As a novel type of noncoding RNAs, covalently closed circular RNAs (circRNAs) are ubiquitously expressed in eukaryotes. Emerging studies have related dysregulation of circRNAs to tumorigenesis. However, the biogenesis, regulation, function and mechanism of circRNAs in gastric cancer (GC) remain largely unclear.

          Methods

          The expression profile of circRNAs in 6 pairs of GC tissues and adjacent non-tumor tissues was analyzed by RNA-sequencing. Quantitative real-time PCR was used to determine the expression level of circCCDC9 in GC tissues and cell lines. Then, functional experiments in vitro and in vivo were employed to explore the effects of circCCDC9 on tumor growth and metastasis in GC. Mechanistically, dual luciferase reporter, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down assays were performed to confirm that circCCDC9 directly sponged miR-6792-3p and alleviated suppression on target CAV1 expression.

          Results

          Evidently down-regulated expression of circCCDC9 was observed in both GC tissues and cell lines. Expression of circCCDC9 was negatively correlated with tumor size, lymph node invasion, advanced clinical stage and overall survival in GC patients. Functionally, overexpression of circCCDC9 significantly inhibited the proliferation, migration and invasion of GC cell lines in vitro and tumor growth and metastasis in vivo, whereas miR-6792-3p mimics counteracted these effects. Mechanistic analysis demonstrated that circCCDC9 acted as a “ceRNA” of miR-6792-3p to relieve the repressive effect of miR-6792-3p on its target CAV1, then suppressed the tumorigenesis of GC.

          Conclusions

          CircCCDC9 functions as a tumor suppressor in inhibiting the progression of GC through miR-6792-3p/CAV1 axis, which has provided an exploitable biomarker and therapeutic target for patients with GC.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations.

          Chromosomal translocations encode oncogenic fusion proteins that have been proven to be causally involved in tumorigenesis. Our understanding of whether such genomic alterations also affect non-coding RNAs is limited, and their impact on circular RNAs (circRNAs) has not been explored. Here, we show that well-established cancer-associated chromosomal translocations give rise to fusion circRNAs (f-circRNA) that are produced from transcribed exons of distinct genes affected by the translocations. F-circRNAs contribute to cellular transformation, promote cell viability and resistance upon therapy, and have tumor-promoting properties in in vivo models. Our work expands the current knowledge regarding molecular mechanisms involved in cancer onset and progression, with potential diagnostic and therapeutic implications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression

            Background In recent years, circular RNAs (circRNAs), a new star of non-coding RNA, have been emerged as vital regulators and gained much attention for involvement of initiation and progression of diverse kinds of human diseases, especially cancer. However, regulatory role, clinical significance and underlying mechanisms of circRNAs in triple-negative breast cancer (TNBC) still remain largely unknown. Methods Here, the expression profile of circRNAs in 4 pairs of TNBC tissues and adjacent non-tumor tissues was analyzed by RNA-sequencing. Quantitative real-time PCR and in situ hybridization were used to determine the level and prognostic values of circAGFG1 in two TNBC cohorts. Then, functional experiments in vitro and in vivo were performed to investigate the effects of circAGFG1 on tumor growth and metastasis in TNBC. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between circAGFG1 and miR-195-5p in TNBC. Results We found that circAGFG1 was evidently up-regulated in TNBC, and its level was correlated with clinical stage, pathological grade and poor prognosis of patients with TNBC. The results indicated that circAGFG1 could promote TNBC cell proliferation, mobility and invasion as well as tumorigenesis and metastasis in vivo. Mechanistic analysis showed that circAGFG1 may act as a ceRNA (competing endogenous RNA) of miR-195-5p to relieve the repressive effect of miR-195-5p on its target cyclin E1 (CCNE1). Conclusions Our findings suggest that circAGFG1 promotes TNBC progression through circAGFG1/miR-195-5p/CCNE1 axis and it may serve as a new diagnostic marker or target for treatment of TNBC patients. Electronic supplementary material The online version of this article (10.1186/s12943-018-0933-7) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CircNet: a database of circular RNAs derived from transcriptome sequencing data

              Circular RNAs (circRNAs) represent a new type of regulatory noncoding RNA that only recently has been identified and cataloged. Emerging evidence indicates that circRNAs exert a new layer of post-transcriptional regulation of gene expression. In this study, we utilized transcriptome sequencing datasets to systematically identify the expression of circRNAs (including known and newly identified ones by our pipeline) in 464 RNA-seq samples, and then constructed the CircNet database (http://circnet.mbc.nctu.edu.tw/) that provides the following resources: (i) novel circRNAs, (ii) integrated miRNA-target networks, (iii) expression profiles of circRNA isoforms, (iv) genomic annotations of circRNA isoforms (e.g. 282 948 exon positions), and (v) sequences of circRNA isoforms. The CircNet database is to our knowledge the first public database that provides tissue-specific circRNA expression profiles and circRNA–miRNA-gene regulatory networks. It not only extends the most up to date catalog of circRNAs but also provides a thorough expression analysis of both previously reported and novel circRNAs. Furthermore, it generates an integrated regulatory network that illustrates the regulation between circRNAs, miRNAs and genes.
                Bookmark

                Author and article information

                Contributors
                lz19950428@sjtu.edu.cn
                rrzzyy1993@163.com
                2324456264@qq.com
                zhuzhonglin1992@163.com
                yuzhilong2013@163.com
                1311010059@qq.com
                fzmaoalb@163.com
                qiuwryb@126.com
                richard-hc@sohu.com
                Journal
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central (London )
                1476-4598
                9 May 2020
                9 May 2020
                2020
                : 19
                : 86
                Affiliations
                [1 ]GRID grid.16821.3c, ISNI 0000 0004 0368 8293, Department of General Surgery, Shanghai General Hospital, , Shanghai Jiaotong University School of Medicine, ; 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600 China
                [2 ]GRID grid.414011.1, Department of Gastrointestinal Surgery, , Henan Provincial People’s Hospital, ; Zhengzhou, China
                Article
                1203
                10.1186/s12943-020-01203-8
                7210689
                32386516
                e7b93a7e-9326-440a-9f30-5625d199eb4d
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 15 October 2019
                : 15 April 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81772526
                Award Recipient :
                Funded by: Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support
                Award ID: 20161425
                Award Recipient :
                Funded by: Shanghai Jiaotong University Medical Cross Fund
                Award ID: YG2017MS28
                Award Recipient :
                Funded by: Shanghai Municipal Science and Technology Committee
                Award ID: 14411966800
                Award Recipient :
                Funded by: Science and Technology Commission Project of Songjiang District
                Award ID: 18SJKJGG23
                Award ID: 19SJKJGG22
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Oncology & Radiotherapy
                circccdc9,mir-6792-3p,cav1,gastric cancer
                Oncology & Radiotherapy
                circccdc9, mir-6792-3p, cav1, gastric cancer

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content425

                Cited by100

                Most referenced authors1,067