1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening for Bone Mineral Density and Assessment Knowledge Level of Low Peak Bone Risk Factors and Preventive Practices Among Kuwaiti Future Mothers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Attaining greater peak bone mass (PBM) prior to the onset of bone loss is getting increasing public health attention as healthy strong bones are essential to maintain our life. Females are more susceptible to bone loss. Knowledge and awareness about low peak bone mass and its related risk factors are important contributors to its preventive behavior.

          Objective

          To screen apparently healthy young Kuwaiti future mothers for low bone mineral density (BMD) and to assess their knowledge level about determinants of PBM and preventive practices.

          Methods

          A cross-sectional comparative study on 445 eligible women aged 18–35 years (either students or employees from Kuwait University) was performed. Data on socio-demographic and lifestyle variables were obtained by a semi-structured questionnaire. Their knowledge was assessed using the modified Osteoporosis Knowledge Assessment Tool (OKAT). Bone mineral Density (BMD) was measured using Quantitative Ultrasonography (QUS).

          Results

          More than half (59.3%) of females had poor knowledge. A statistically significant relation was noted between the overall knowledge score and age, college, occupation, and socioeconomic class ( P<0.05 for each). Only 13.9% have low Z-score by QUS. By logistic regression, less carbonated beverages and coffee consumption positively affect BMD, while inadequate exercises level, indoor exposure to sunlight, and less frequency of brisk walking negatively affect BMD.

          Conclusion

          Unacceptable knowledge score significantly associated with BMD Z-score status. More attention should be devoted to education programs targeting adolescents and young females to promote knowledge about PBM and practice towards accrual and maintenance of bone health.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          An estimate of the worldwide prevalence and disability associated with osteoporotic fractures.

          The aim of this study was to quantify the global burden of osteoporotic fracture worldwide. The incidence of hip fractures was identified by systematic review and the incidence of osteoporotic fractures was imputed from the incidence of hip fractures in different regions of the world. Excess mortality and disability weights used age- and sex-specific data from Sweden to calculate the Disability Adjusted Life Years (DALYs) lost due to osteoporotic fracture. In the year 2000 there were an estimated 9.0 million osteoporotic fractures of which 1.6 million were at the hip, 1.7 million at the forearm and 1.4 million were clinical vertebral fractures. The greatest number of osteoporotic fractures occurred in Europe (34.8%). The total DALYs lost was 5.8 million of which 51% were accounted for by fractures that occurred in Europe and the Americas. World-wide, osteoporotic fractures accounted for 0.83% of the global burden of non-communicable disease and was 1.75% of the global burden in Europe. In Europe, osteoporotic fractures accounted for more DALYs lost than common cancers with the exception of lung cancer. For chronic musculo-skeletal disorders the DALYs lost in Europe due to osteoporosis (2.0 million) were less than for osteoarthrosis (3.1 million) but greater than for rheumatoid arthritis (1.0 million). We conclude that osteoporotic fractures are a significant cause of morbidity and mortality, particularly in the developed countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine.

            The goal of our study was to estimate the prevalence of osteoporosis and low bone mass based on bone mineral density (BMD) at the femoral neck and the lumbar spine in adults 50 years and older in the United States (US). We applied prevalence estimates of osteoporosis or low bone mass at the femoral neck or lumbar spine (adjusted by age, sex, and race/ethnicity to the 2010 Census) for the noninstitutionalized population aged 50 years and older from the National Health and Nutrition Examination Survey 2005-2010 to 2010 US Census population counts to determine the total number of older US residents with osteoporosis and low bone mass. There were more than 99 million adults aged 50 years and older in the US in 2010. Based on an overall 10.3% prevalence of osteoporosis, we estimated that in 2010, 10.2 million older adults had osteoporosis. The overall low bone mass prevalence was 43.9%, from which we estimated that 43.4 million older adults had low bone mass. We estimated that 7.7 million non-Hispanic white, 0.5 million non-Hispanic black, and 0.6 million Mexican American adults had osteoporosis, and another 33.8, 2.9, and 2.0 million had low bone mass, respectively. When combined, osteoporosis and low bone mass at the femoral neck or lumbar spine affected an estimated 53.6 million older US adults in 2010. Although most of the individuals with osteoporosis or low bone mass were non-Hispanic white women, a substantial number of men and women from other racial/ethnic groups also had osteoporotic BMD or low bone mass. © 2014 American Society for Bone and Mineral Research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations

              Lifestyle choices influence 20–40 % of adult peak bone mass. Therefore, optimization of lifestyle factors known to influence peak bone mass and strength is an important strategy aimed at reducing risk of osteoporosis or low bone mass later in life. The National Osteoporosis Foundation has issued this scientific statement to provide evidence-based guidance and a national implementation strategy for the purpose of helping individuals achieve maximal peak bone mass early in life. In this scientific statement, we (1) report the results of an evidence-based review of the literature since 2000 on factors that influence achieving the full genetic potential for skeletal mass; (2) recommend lifestyle choices that promote maximal bone health throughout the lifespan; (3) outline a research agenda to address current gaps; and (4) identify implementation strategies. We conducted a systematic review of the role of individual nutrients, food patterns, special issues, contraceptives, and physical activity on bone mass and strength development in youth. An evidence grading system was applied to describe the strength of available evidence on these individual modifiable lifestyle factors that may (or may not) influence the development of peak bone mass (Table 1). A summary of the grades for each of these factors is given below. We describe the underpinning biology of these relationships as well as other factors for which a systematic review approach was not possible. Articles published since 2000, all of which followed the report by Heaney et al. [1] published in that year, were considered for this scientific statement. This current review is a systematic update of the previous review conducted by the National Osteoporosis Foundation [1]. Lifestyle Factor Grade Macronutrients  Fat D  Protein C Micronutrients  Calcium A  Vitamin D B  Micronutrients other than calcium and vitamin D D Food Patterns  Dairy B  Fiber C  Fruits and vegetables C  Detriment of cola and caffeinated beverages C Infant Nutrition  Duration of breastfeeding D  Breastfeeding versus formula feeding D  Enriched formula feeding D Adolescent Special Issues  Detriment of oral contraceptives D  Detriment of DMPA injections B  Detriment of alcohol D  Detriment of smoking C Physical Activity and Exercise  Effect on bone mass and density A  Effect on bone structural outcomes B Considering the evidence-based literature review, we recommend lifestyle choices that promote maximal bone health from childhood through young to late adolescence and outline a research agenda to address current gaps in knowledge. The best evidence (grade A) is available for positive effects of calcium intake and physical activity, especially during the late childhood and peripubertal years—a critical period for bone accretion. Good evidence is also available for a role of vitamin D and dairy consumption and a detriment of DMPA injections. However, more rigorous trial data on many other lifestyle choices are needed and this need is outlined in our research agenda. Implementation strategies for lifestyle modifications to promote development of peak bone mass and strength within one’s genetic potential require a multisectored (i.e., family, schools, healthcare systems) approach.
                Bookmark

                Author and article information

                Journal
                J Multidiscip Healthc
                J Multidiscip Healthc
                jmdh
                jmulthealth
                Journal of Multidisciplinary Healthcare
                Dove
                1178-2390
                18 December 2020
                2020
                : 13
                : 1983-1991
                Affiliations
                [1 ]Public Health Department, Ministry of Health , Kuwait City, Kuwait
                [2 ]Community and Occupational Medicine Department, Faculty of Medicine, Al-Azhar University , Cairo, Egypt
                Author notes
                Correspondence: Heba Mohamed Abd ElGalilCommunity and Occupational Medicine Department, Faculty of Medicine, Al-Azhar University , Yousef Abbas Street, Cairo11754, Egypt Email hebamohamed.medg@azhar.edu.eg
                Author information
                http://orcid.org/0000-0002-1454-6640
                Article
                280261
                10.2147/JMDH.S280261
                7755344
                5e77e87f-1c78-4959-859a-8770d7223108
                © 2020 Al-Ayyadhi et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 09 September 2020
                : 19 November 2020
                Page count
                Figures: 2, Tables: 10, References: 41, Pages: 9
                Categories
                Original Research

                Medicine
                pbm,bmd,kuwaiti,knowledge
                Medicine
                pbm, bmd, kuwaiti, knowledge

                Comments

                Comment on this article