3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of the antioxidant capacity of sesamol esters in gelled emulsion and non-gelled emulsion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Graphical abstract

          Highlights

          • Efficiency of sesamol esters was evaluated in gelled emulsion and non-gelled emulsion.

          • Sesamol esters exhibited higher efficiency than sesamol on improving oxidative stability.

          • Cut-off effect was observed in gelled emulsion, while it was vanished in non-gelled emulsion.

          • The efficiency of sesamyl acetate and sesamyl hexanoate reduced in gelled emulsion.

          • Sesamyl butyrate showed higher efficiency in gelled emulsion than non-gelled emulsion.

          Abstract

          The antioxidant capacity of sesamol esters in gelled emulsion was investigated in comparison with non-gelled emulsion to assess the role of mass transfer on their antioxidant capacity. Initiation phase and propagation phase kinetic parameters of peroxidation was calculated using a sigmoidal model. Sesamol esters showed higher antioxidant activity than sesamol in gelled emulsion and non-gelled emulsion. Sesamyl acetate, sesamyl butyrate, and sesamyl hexanoate had no synergistic effect with sesamol in gelled emulsion, while in non-gelled emulsion sesamyl butyrate exhibited a slight synergistic effect with sesamol. The antioxidant activity of sesamyl acetate and sesamyl hexanoate in non-gelled emulsion samples were higher than those of gelled emulsion samples, while sesamyl butyrate exhibited higher antioxidant activity in gelled emulsion than that of non-gelled emulsion. The cut-off effect hypothesis was observed in gelled emulsion, while this hypothesis was disappeared in non-gelled emulsion. During propagation phase, sesamol esters remained active and exhibited inhibitory effect.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial and antioxidant activities of three Mentha species essential oils.

          The present study describes the antimicrobial activity and free radical scavenging capacity (RSC) of essential oils from Mentha aquatica L., Mentha longifolia L., and Mentha piperita L. The chemical profile of each essential oil was determined by GC-MS and TLC. All essential oils exhibited very strong antibacterial activity, in particularly against Esherichia coli strains. The most powerful was M. piperita essential oil, especially towards multiresistant strain of Shigella sonei and Micrococcus flavus ATTC 10,240. All tested oils showed significant fungistatic and fungicidal activity [expressed as minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values, respectively], that were considerably higher than those of the commercial fungicide bifonazole. The essential oils of M. piperita and M. longifolia were found to be more active than the essential oil of M. aquatica. Especially low MIC (4 microL/mL) and MFC (4 microL/mL) were found with M. piperita oil against Trichophyton tonsurans and Candida albicans (both 8 microL/mL). The RSC was evaluated by measuring the scavenging activity of the essential oils on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and OH radicals. All examined essential oils were able to reduce DPPH radicals into the neutral DPPH-H form, and this activity was dose-dependent. However, only the M. piperita oil reduced DPPH to 50 % (IC50 = 2.53 microg/mL). The M. piperita essential oil also exhibited the highest OH radical scavenging activity, reducing OH radical generation in the Fenton reaction by 24 % (pure oil). According to GC-MS and TLC (dot-blot techniques), the most powerful scavenging compounds were monoterpene ketones (menthone and isomenthone) in the essential oils of M. longifolia and M. piperita and 1,8-cineole in the oil of M. aquatica.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation

            There has been strong interest in developing effective strategies to inhibit lipid oxidation in emulsified food products due to the need to incorporate oxidatively labile bioactive lipids, such as ω-3 fatty acids, conjugated linoleic acids, or carotenoids. Emulsifiers or coemulsifiers can be utilized to inhibit lipid oxidation in emulsions. Both of these molecular types can adsorb to droplet surfaces and inhibit lipid oxidation, but emulsifiers can also stabilize droplets against aggregation whereas coemulsifiers cannot. There are a host of existing emulsifiers, covalent conjugates, or physical complexes that have the potential to inhibit lipid oxidation by a variety of mechanisms. Existing emulsifiers with antioxidant potential consist of surfactants, phospholipids, proteins, polysaccharides, and colloidal particles. Conjugates and complexes are typically formed by covalently or physically linking together a surface-active molecule with an antioxidant molecule. This article reviews the molecular and physicochemical basis for the surface and antioxidant activities of emulsifiers and coemulsifiers, highlights the important properties of interfacial layers that can be engineered to control lipid oxidation, and outlines different kinds of existing emulsifiers, conjugates, and complexes that can be used to inhibit oxidation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion.

              Nanoemulsions can be used for the encapsulation and oral delivery of bioactive lipophilic components, such as nutraceuticals and pharmaceuticals. There is growing interest in the utilization of low-energy methods to produce edible nanoemulsions. In this study, we examined the influence of system composition and preparation conditions on the formation of edible nanoemulsions by the emulsion phase inversion (EPI) method. The EPI method involves titrating an aqueous phase (water) into an organic phase (oil+hydrophilic surfactant). The influence of oil type, surfactant type, surfactant-to-oil ratio (SOR), and initial surfactant location on the particle size distributions of the emulsions was studied. The droplet size produced by this method depended on: (i) oil type: medium chain triglycerides (MCT)
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Chem X
                Food Chem X
                Food Chemistry: X
                Elsevier
                2590-1575
                03 May 2023
                30 June 2023
                03 May 2023
                : 18
                : 100700
                Affiliations
                Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
                Author notes
                [* ]Corresponding author at: Department of Food Science and Technology, School of Agriculture, Shiraz University, P.O. BOX 71441-65186, Shiraz, Iran. golmakani@ 123456shirazu.ac.ir
                Article
                S2590-1575(23)00143-8 100700
                10.1016/j.fochx.2023.100700
                10189410
                5e09d019-717d-47f5-b8d0-a727f96630b8
                © 2023 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 February 2023
                : 14 April 2023
                : 30 April 2023
                Categories
                Research Article

                gelled emulsion,mass transfer,oxidative stability,sesamol esters

                Comments

                Comment on this article