Inter-individual differences in regional GABA as assessed by magnetic resonance spectroscopy (MRS) relate to behavioural variation in humans. However, it is not clear what the relationship is between MRS measures of the concentration of neurotransmitters in a region and synaptic activity. Transcranial magnetic stimulation (TMS) techniques provide physiological measures of cortical excitation or inhibition. Here, we investigated the relationship between MRS and TMS measures of glutamatergic and GABAergic activity within the same individuals. We demonstrated a relationship between MRS-assessed glutamate levels and a TMS measure of global cortical excitability, suggesting that MRS measures of glutamate do reflect glutamatergic activity. However, there was no clear relationship between MRS-assessed GABA levels and TMS measures of synaptic GABA A or GABA B activity. A relationship was found between MRS-assessed GABA and a TMS protocol with less clearly understood physiological underpinnings. We speculate that this protocol may therefore reflect extrasynaptic GABA tone.
Magnetic resonance spectroscopy (MRS) allows measurement of neurotransmitter concentrations within a region of interest in the brain. Inter-individual variation in MRS-measured GABA levels have been related to variation in task performance in a number of regions. However, it is not clear how MRS-assessed measures of GABA relate to cortical excitability or GABAergic synaptic activity. We therefore performed two studies investigating the relationship between neurotransmitter levels as assessed by MRS and transcranial magnetic stimulation (TMS) measures of cortical excitability and GABA synaptic activity in the primary motor cortex. We present uncorrected correlations, where the Pvalue should therefore be considered with caution. We demonstrated a correlation between cortical excitability, as assessed by the slope of the TMS input–output curve and MRS-assessed glutamate levels ( r = 0.803, P = 0.015) but no clear relationship between MRS-assessed GABA levels and TMS-assessed synaptic GABA A activity (2.5 ms inter-stimulus interval (ISI) short-interval intracortical inhibition (SICI); Experiment 1: r = 0.33, P = 0.31; Experiment 2: r = –0.23, P = 0.46) or GABA B activity (long-interval intracortical inhibition (LICI); Experiment 1: r = –0.47, P = 0.51; Experiment 2: r = 0.23, P = 0.47). We demonstrated a significant correlation between MRS-assessed GABA levels and an inhibitory TMS protocol (1 ms ISI SICI) with distinct physiological underpinnings from the 2.5 ms ISI SICI ( r = –0.79, P = 0.018). Interpretation of this finding is challenging as the mechanisms of 1 ms ISI SICI are not well understood, but we speculate that our results support the possibility that 1 ms ISI SICI reflects a distinct GABAergic inhibitory process, possibly that of extrasynaptic GABA tone.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.