9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cardiac remodelling in a baboon model of intrauterine growth restriction mimics accelerated ageing : Accelerated cardiac ageing by intrauterine growth restriction

      , , , , ,
      The Journal of Physiology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rodent models of intrauterine growth restriction (IUGR) successfully identify mechanisms that can lead to short-term and long-term detrimental cardiomyopathies but differences between rodent and human cardiac physiology and placental-fetal development indicate a need for models in precocial species for translation to human development. We developed a baboon model for IUGR studies using a moderate 30% global calorie restriction of pregnant mothers and used cardiac magnetic resonance imaging to evaluate offspring heart function in early adulthood. Impaired diastolic and systolic cardiac function was observed in IUGR offspring with differences between male and female subjects, compared to their respective controls. Aspects of cardiac impairment found in the IUGR offspring were similar to those found in normal controls in a geriatric cohort. Understanding early cardiac biomarkers of IUGR using non-invasive imaging in this susceptible population, especially taking into account sexual dimorphisms, will aid recognition of the clinical presentation, development of biomarkers suitable for use in humans and management of treatment strategies.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study.

          The risk of heart failure in type 2 diabetes mellitus is greater than can be accounted for by hypertension and coronary artery disease. Rodent studies indicate that in obesity and type 2 diabetes mellitus, lipid overstorage in cardiac myocytes produces lipotoxic intermediates that cause apoptosis, which leads to heart failure. In humans with diabetes mellitus, cardiac steatosis previously has been demonstrated in explanted hearts of patients with end-stage nonischemic cardiomyopathy. Whether cardiac steatosis precedes the onset of cardiomyopathy in individuals with impaired glucose tolerance or in patients with type 2 diabetes mellitus is unknown. To represent the progressive stages in the natural history of type 2 diabetes mellitus, we stratified 134 individuals (age 45+/-12 years) into 1 of 4 groups: (1) lean normoglycemic (lean), (2) overweight and obese normoglycemic (obese), (3) impaired glucose tolerance, and (4) type 2 diabetes mellitus. Localized (1)H magnetic resonance spectroscopy and cardiac magnetic resonance imaging were used to quantify myocardial triglyceride content and left ventricular function, respectively. Compared with lean subjects, myocardial triglyceride content was 2.3-fold higher in those with impaired glucose tolerance and 2.1-fold higher in those with type 2 diabetes mellitus (P<0.05). Left ventricular ejection fraction was normal and comparable across all groups. In humans, impaired glucose tolerance is accompanied by cardiac steatosis, which precedes the onset of type 2 diabetes mellitus and left ventricular systolic dysfunction. Thus, lipid overstorage in human cardiac myocytes is an early manifestation in the pathogenesis of type 2 diabetes mellitus and is evident in the absence of heart failure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nutrition in early life and the programming of adult disease: a review.

            Foetal development and infancy are life stages that are characterised by rapid growth, development and maturation of organs and systems. Variation in the quality or quantity of nutrients consumed by mothers during pregnancy, or infants during the first year of life, can exert permanent and powerful effects upon developing tissues. These effects are termed 'programming' and represent an important risk factor for noncommunicable diseases of adulthood, including the metabolic syndrome and coronary heart disease. This narrative review provides an overview of the evidence-base showing that indicators of nutritional deficit in pregnancy are associated with a greater risk of type-2 diabetes and cardiovascular mortality. There is also a limited evidence-base that suggests some relationship between breastfeeding and the timing and type of foods used in weaning, and disease in later life. Many of the associations reported between indicators of early growth and adult disease appear to interact with specific genotypes. This supports the idea that programming is one of several cumulative influences upon health and disease acting across the lifespan. Experimental studies have provided important clues to the mechanisms that link nutritional challenges in early life to disease in adulthood. It is suggested that nutritional programming is a product of the altered expression of genes that regulate the cell cycle, resulting in effective remodelling of tissue structure and functionality. The observation that traits programmed by nutritional exposures in foetal life can be transmitted to further generations adds weight the argument that heritable epigenetic modifications play a critical role in nutritional programming. © 2014 The British Dietetic Association Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure.

              Many older patients with symptoms of congestive heart failure have a preserved left ventricular ejection fraction (LVEF). However, the pathophysiology of this disorder, presumptively termed diastolic heart failure (DHF), is not well characterized and it is unknown whether it represents true heart failure. To assess the 4 key pathophysiological domains that characterize classic heart failure by systematically performing measurements in older patients with presumed DHF and comparing these results with those from age-matched healthy volunteers and patients with classic systolic heart failure (SHF). Observational clinical investigation conducted in 1998 in a general community and teaching hospital in Winston-Salem, NC. A total of 147 subjects aged at least 60 years. Fifty-nine had isolated DHF defined as clinically presumed heart failure, LVEF of at least 50%, and no evidence of significant coronary, valvular, or pulmonary disease. Sixty had typical SHF (LVEF < or =35%). Twenty-eight were age-matched healthy volunteer controls. Left ventricular structure and function, exercise capacity, neuroendocrine function, and quality of life. By echocardiography, mean (SE) LVEF was 60% (2%) in patients with DHF vs 31% (2%) in those with SHF and 54% (2%) in controls. Mean (SE) LV mass-volume ratio was markedly increased in patients with DHF (2.12 [0.14] g/mL) vs those with SHF (1.22 [0.14] g/mL) (P<.001) and vs controls (1.49 [0.17] g/mL) (P =.002). Peak oxygen consumption by expired gas analysis during cycle ergometry was similar in the DHF and SHF groups (14.2 [0.5] and 13.1 [0.5] mL/kg per minute, respectively; P =.40) and in both was markedly reduced compared with healthy controls (19.9 [0.7] mL/kg per minute) (P =.001 for both). Ventilatory anaerobic threshold was similar in the DHF and SHF groups (9.1 [0.3] and 8.7 [0.3] mL/kg per minute, respectively; P<.001) and in both was reduced compared with healthy controls (11.5 [0.4] mL/kg per minute) (P<.001). Norepinephrine levels were similar in the DHF (306 [64] pg/mL) and SHF (287 [62] pg/mL) groups (P =.56) and in both were markedly increased vs healthy controls (169 [80] pg/mL) (P =.007 and.03, respectively). Brain natriuretic peptide was substantially increased in both the DHF (56 [30] pg/mL) and the SHF (154 [28] pg/mL) groups compared with healthy controls (3 [38] pg/mL) (P =.02 and.001, respectively). Quality-of-life decrement score as assessed by the Minnesota Living with Heart Failure Questionnaire was substantially increased from the benchmark score of 10 in both groups (SHF: 43.8 [3.9]; DHF: 24.8 [4.4]). Patients with isolated DHF have similar though not as severe pathophysiologic characteristics compared with patients with typical SHF, including severely reduced exercise capacity, neuroendocrine activation, and impaired quality of life.
                Bookmark

                Author and article information

                Journal
                The Journal of Physiology
                J Physiol
                Wiley-Blackwell
                00223751
                February 15 2017
                February 15 2017
                : 595
                : 4
                : 1093-1110
                Article
                10.1113/JP272908
                5309359
                27988927
                5d0d6bc5-59ba-4320-bdd6-b49b4402607f
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article