9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sustainability of Coastal Agriculture under Climate Change

      , , , ,
      Sustainability
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climatic and non-climatic stressors, such as temperature increases, rainfall fluctuations, population growth and migration, pollution, land-use changes and inadequate gender-specific strategies, are major challenges to coastal agricultural sustainability. In this paper, we discuss all pertinent issues related to the sustainability of coastal agriculture under climate change. It is evident that some climate-change-related impacts (e.g., temperature and rainfall) on agriculture are similarly applicable to both coastal and non-coastal settings, but there are other factors (e.g., inundation, seawater intrusion, soil salinity and tropical cyclones) that particularly impact coastal agricultural sustainability. Coastal agriculture is characterised by low-lying and saline-prone soils where spatial competition with urban growth is an ever-increasing problem. We highlight how coastal agricultural viability could be sustained through blending farmer perceptions, adaptation options, gender-specific participation and integrated coastal resource management into policy ratification. This paper provides important aspects of the coastal agricultural sustainability, and it can be an inspiration for further research and coastal agrarian planning.

          Related collections

          Most cited references143

          • Record: found
          • Abstract: found
          • Article: not found

          Temperature increase reduces global yields of major crops in four independent estimates.

          Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The causes of land-use and land-cover change: moving beyond the myths

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rice yields decline with higher night temperature from global warming.

              The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35 degrees C and 1.13 degrees C, respectively, for the period 1979-2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1 degrees C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming.
                Bookmark

                Author and article information

                Contributors
                Journal
                SUSTDE
                Sustainability
                Sustainability
                MDPI AG
                2071-1050
                December 2019
                December 16 2019
                : 11
                : 24
                : 7200
                Article
                10.3390/su11247200
                5d0484e9-b21a-425c-8ced-73246f9d7fa5
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article