9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pre-frontal parvalbumin interneurons in schizophrenia: a meta-analysis of post-mortem studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parvalbumin interneurons are fast-spiking GABAergic neurons that provide inhibitory control of cortical and subcortical circuits and are thought to be a key locus of the pathophysiology underlying schizophrenia. In view of the contradictory results regarding the nature of parvalbumin post-mortem findings in schizophrenia, we conducted a quantitative meta-analysis of the data on parvalbumin cell density and parvalbumin mRNA levels in pre-frontal regions in the brains of patients with schizophrenia ( n = 274) compared with healthy controls ( n = 275). The results suggest that parvalbumin interneurons are reduced in density in the frontal cortex of patients with schizophrenia ( Hedges’ g = − 0.27; p = 0.03) and there is a non-significant reduction in parvalbumin mRNA levels ( g = − 0.44; p = 0.12). However, certain methodological issues need to be considered in interpreting such results and are discussed in more detail. A meta-regression was conducted for post-mortem interval and year of publication as covariates which were both non-significant, except in the mRNA meta-analysis where post-mortem interval was found to be significant. Overall our findings provide tentative support for the hypothesis that the GABAergic system is deficient in schizophrenia and that parvalbumin-containing interneurons offer a potential target for treatment. However, further well-controlled studies that examine multiple regions and layers are warranted to determine whether parvalbumin alterations are region or layer specific and to test the robustness of the findings further.

          Electronic supplementary material

          The online version of this article (10.1007/s00702-019-02080-2) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Abnormal neural oscillations and synchrony in schizophrenia.

          Converging evidence from electrophysiological, physiological and anatomical studies suggests that abnormalities in the synchronized oscillatory activity of neurons may have a central role in the pathophysiology of schizophrenia. Neural oscillations are a fundamental mechanism for the establishment of precise temporal relationships between neuronal responses that are in turn relevant for memory, perception and consciousness. In patients with schizophrenia, the synchronization of beta- and gamma-band activity is abnormal, suggesting a crucial role for dysfunctional oscillations in the generation of the cognitive deficits and other symptoms of the disorder. Dysfunctional oscillations may arise owing to anomalies in the brain's rhythm-generating networks of GABA (gamma-aminobutyric acid) interneurons and in cortico-cortical connections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

            Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.

              Deficits in cognitive control, a core disturbance of schizophrenia, appear to emerge from impaired prefrontal gamma oscillations. Cortical gamma oscillations require strong inhibitory inputs to pyramidal neurons from the parvalbumin basket cell (PVBC) class of GABAergic neurons. Recent findings indicate that schizophrenia is associated with multiple pre- and postsynaptic abnormalities in PVBCs, each of which weakens their inhibitory control of pyramidal cells. These findings suggest a new model of cortical dysfunction in schizophrenia in which PVBC inhibition is decreased to compensate for an upstream deficit in pyramidal cell excitation. This compensation is thought to rebalance cortical excitation and inhibition, but at a level insufficient to generate the gamma oscillation power required for high levels of cognitive control. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                +44 20 7848 0355 , stephen.kaar@kcl.ac.uk
                Journal
                J Neural Transm (Vienna)
                J Neural Transm (Vienna)
                Journal of Neural Transmission
                Springer Vienna (Vienna )
                0300-9564
                1435-1463
                16 September 2019
                16 September 2019
                2019
                : 126
                : 12
                : 1637-1651
                Affiliations
                GRID grid.13097.3c, ISNI 0000 0001 2322 6764, Psychosis Studies [PO63], Inst. of Psychiatry, Psychology and Neuroscience, , King’s College London, ; 5th Floor, Main Building, Denmark Hill, London, UK
                Author information
                http://orcid.org/0000-0003-0194-0806
                Article
                2080
                10.1007/s00702-019-02080-2
                6856257
                31529297
                5cc2848a-39e8-4f1f-b6bb-92d1e855196c
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 2 May 2019
                : 8 September 2019
                Categories
                Psychiatry and Preclinical Psychiatric Studies - Original Article
                Custom metadata
                © Springer-Verlag GmbH Austria, part of Springer Nature 2019

                cognition,oscillations,calcium-binding proteins,neurobiology,pathology,immunoreactivity

                Comments

                Comment on this article