2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium vivax vaccine: What is the best way to go?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.

          Related collections

          Most cited references251

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Comparative genomics of the neglected human malaria parasite Plasmodium vivax.

          The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial.

            (2015)
            The efficacy and safety of the RTS,S/AS01 candidate malaria vaccine during 18 months of follow-up have been published previously. Herein, we report the final results from the same trial, including the efficacy of a booster dose.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite.

              Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasite's biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/1748879
                URI : https://loop.frontiersin.org/people/1749589
                URI : https://loop.frontiersin.org/people/327761
                URI : https://loop.frontiersin.org/people/289562
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                16 January 2023
                2022
                : 13
                : 910236
                Affiliations
                [1] 1 Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ) , Curitiba, Brazil
                [2] 2 Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR) , Curitiba, Brazil
                [3] 3 Biomedical Sciences Course, Educational Union of Cascavel (UNIVEL) , Cascavel, Brazil
                Author notes

                Edited by: José Roberto Mineo, Federal University of Uberlandia, Brazil

                Reviewed by: Daniel Youssef Bargieri, University of São Paulo, Brazil; Patchanee Chootong, Mahidol University, Thailand

                *Correspondence: Letusa Albrecht, letusa.albrecht@ 123456fiocruz.br

                This article was submitted to Parasite Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.910236
                9885200
                36726991
                5caf2739-4386-46de-af47-5971cbb7de63
                Copyright © 2023 Veiga, Moriggi, Vettorazzi, Müller-Santos and Albrecht

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 April 2022
                : 23 December 2022
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 251, Pages: 27, Words: 15144
                Funding
                GTSV was supported by Pibic-Fiocruz and Capes with a student fellow (undergraduate and Master, respectively).
                Categories
                Immunology
                Review

                Immunology
                malaria,plasmodium vivax,vaccine,subunit,vaccine candidates
                Immunology
                malaria, plasmodium vivax, vaccine, subunit, vaccine candidates

                Comments

                Comment on this article