9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting Glutamine Addiction in Gliomas

      review-article
      , *
      Cancers
      MDPI
      glioma, glutamine, glutamate, glutaminase, glutamine synthetase, glutamate dehydrogenase, therapy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The most common malignant brain tumors are those of astrocytic origin, gliomas, with the most aggressive glioblastoma (WHO grade IV) among them. Despite efforts, medicine has not made progress in terms of the prognosis and life expectancy of glioma patients. Behind the malignant phenotype of gliomas lies multiple genetic mutations leading to reprogramming of their metabolism, which gives those highly proliferating cells an advantage over healthy ones. The so-called glutamine addiction is a metabolic adaptation that supplements oxidative glycolysis in order to secure neoplastic cells with nutrients and energy in unfavorable conditions of hypoxia. The present review aims at presenting the research and clinical attempts targeting the different metabolic pathways involved in glutamine metabolism in gliomas. A brief description of the biochemistry of glutamine transport, synthesis, and glutaminolysis, etc. will forego a detailed comparison of the therapeutic strategies undertaken to inhibit glutamine utilization by gliomas.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Bidirectional transport of amino acids regulates mTOR and autophagy.

          Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Acidic extracellular microenvironment and cancer

            Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches

              Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as “Warburg effect or aerobic glycolysis.” As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                29 January 2020
                February 2020
                : 12
                : 2
                : 310
                Affiliations
                Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland; martomich@ 123456gmail.com
                Author notes
                [* ]Correspondence: mszeliga@ 123456imdik.pan.pl ; Tel.: +48-22-608-6416
                Author information
                https://orcid.org/0000-0003-2973-4692
                Article
                cancers-12-00310
                10.3390/cancers12020310
                7072559
                32013066
                5c44efe2-60f9-4abd-92c6-ce4dde90e608
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 December 2019
                : 27 January 2020
                Categories
                Review

                glioma,glutamine,glutamate,glutaminase,glutamine synthetase,glutamate dehydrogenase,therapy

                Comments

                Comment on this article