1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The prevalence of vancomycin-resistant Staphylococcus aureus in Ethiopia: a systematic review and meta-analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Vancomycin-resistant Staphylococcus aureus, identified as a “high priority antibiotic-resistant pathogen” by the World Health Organization, poses a significant threat to human health. This systematic review and meta-analysis aimed to estimate the pooled prevalence of vancomycin-resistant Staphylococcus aureus in Ethiopia.

          Methods

          This systematic review and meta-analysis was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies that reported VRSA prevalence due to infection or carriage from human clinical specimens were extensively searched in bibliographic databases and grey literatures using entry terms and combination key words. Electronic databases like PubMed, Google Scholar, Wiley Online Library, African Journal Online, Scopus, Science Direct, Embase, and ResearchGate were used to find relevant articles. In addition, the Joanna Briggs Institute quality appraisal tool was used to assess the quality of the included studies. Stata version 14 software was used for statistical analysis. Forest plots using the random-effect model were used to compute the overall pooled prevalence of VRSA and for the subgroup analysis. Heterogeneity was assessed using Cochrane chi-square (I 2) statistics. After publication bias was assessed using a funnel plot and Egger’s test, trim & fill analysis was carried out. Furthermore, sensitivity analysis was done to assess the impact of a single study on pooled effect size.

          Results

          Of the 735 studies identified, 31 studies that fulfilled the eligibility criteria were included for meta-analysis consisted of 14,966 study participants and 2,348 S. aureus isolates. The overall pooled prevalence of VRSA was 14.52% (95% CI: 11.59, 17.44). Significantly high level of heterogeneity was observed among studies (I 2 = 93.0%, p < 0.001). The region-based subgroup analysis depicted highest pooled prevalence of 47.74% (95% CI: 17.79, 77.69) in Sidama region, followed by 14.82% (95% CI: 8.68, 19.88) in Amhara region, while Oromia region had the least pooled prevalence 8.07% (95% CI: 4.09, 12.06). The subgroup analysis based on AST methods depicted a significant variation in pooled prevalence of VRSA (6.3% (95% CI: 3.14, 9.43) for MIC-based methods, and 18.4% (95% CI: 14.03, 22.79) for disk diffusion AST method) which clearly showed that disk diffusion AST method overestimates the pooled VRSA prevalence. The total number of S. aureus isolates was found to be the responsible variable for the existence of heterogeneity among studies (p = 0.033).

          Conclusion

          This study showed an alarmingly high pooled prevalence of VRSA necessitating routine screening, appropriate antibiotic usage, and robust infection prevention measures to manage MRSA infections and control the emergence of drug resistance. Furthermore, mainly attributable to the overestimation of VRSA burden while using disk diffusion method, there is an urgent need to improve the methods to determine vancomycin resistance in Ethiopia and incorporate MIC-based VRSA detection methods in routine clinical laboratory tests, and efforts should be directed at improving it nationally.

          Trial Registration

          PROSPERO registration identification number: CRD42023422043.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13756-023-01291-3.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Measuring inconsistency in meta-analyses.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantifying heterogeneity in a meta-analysis.

              The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity. Copyright 2002 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                melakuashagrie@gmail.com
                alemugedefie@gmail.com
                ermiyas0009@gmail.com
                habtudebash@gmail.com
                ousmanabum@gmail.com
                gebretsadikd@gmail.com
                husshosam@gmail.com
                tilahunmihret21@gmail.com
                Journal
                Antimicrob Resist Infect Control
                Antimicrob Resist Infect Control
                Antimicrobial Resistance and Infection Control
                BioMed Central (London )
                2047-2994
                30 August 2023
                30 August 2023
                2023
                : 12
                : 86
                Affiliations
                GRID grid.467130.7, ISNI 0000 0004 0515 5212, Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, , Wollo University, ; Dessie, Ethiopia
                Article
                1291
                10.1186/s13756-023-01291-3
                10468870
                37649060
                5bc73a20-79b1-43f5-adbf-8f30b93bca1d
                © BioMed Central Ltd., part of Springer Nature 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 June 2023
                : 21 August 2023
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Infectious disease & Microbiology
                vancomycin-resistant staphylococcus aureus,systematic review,meta-analysis,ethiopia

                Comments

                Comment on this article