Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flujos de metano del sistema suelo-vegetación-atmósfera en ecosistemas tropicales Translated title: Methane soil-vegetation-atmosphere fluxes in tropical ecosystems Translated title: Fluxos de metano do sistema solo-vegetação-atmosfera em ecossistemas tropicais

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recientemente, un sorpresivo descubrimiento mostró que, por un proceso no establecido, la vegetación emite metano. Esto podría tener serias implicaciones en química atmosférica, el clima, y las actividades de mitigación del cambio global. Para evaluar la magnitud de la vegetación tropical como fuente de CH4, se re-evalúan los resultados obtenidos en varios ecosistemas venezolanos. Los flujos a la atmósfera desde el sistema suelo-pasto en la sabana indican que los pastos producen CH4 a una velocidad de ~10ng·m-2·s-1. Además, la acumulación de CH4 dentro de la capa de mezcla nocturna en el Guri, lugar afectado por las emisiones de los ecosistemas de sabana y bosque, permite hacer una primera estimación del límite superior de la emisión de CH4 de la vegetación de bosque de <70ng·m-2·s-1. Estos valores podrían estar subestimados pues no incluyen el efecto de la radiación solar sobre la producción de CH4 por la vegetación. Ignorando el posible efecto de la radiación solar, la extrapolación global de estos flujos producen una emisión de CH4 de ~5Tg·año-1 y <22Tg·año-1, para la vegetación de sabana y bosque, respectivamente, valores que concuerdan con estimaciones más bajas reportadas en la literatura, basadas en mediciones de flujos en laboratorio. Por otra parte, la extrapolación global del consumo de CH4 por los suelos produce un sumidero de ~1,3Tg·año-1 para sabanas y 3,3Tg·año-1 para bosques. En conclusión, mediciones de campo en Venezuela apoyan el descubrimiento que la vegetación emite metano. Sin embargo, la extrapolación global indica que la vegetación tropical haría una modesta contribución a la emisión global, la cual adicionalmente sería compensada por el consumo de CH4 en los suelos. Los beneficios del secuestro de carbono por forestación no serían significativamente afectados por la emisión de CH4 por los árboles.

          Translated abstract

          Recently, a surprising discovery indicated that, by an unknown process, vegetation emits methane to the atmosphere. This finding could have serious implications in atmospheric chemistry, climate, and mitigation of global change. In order to evaluate the magnitude of the tropical vegetation source, a re-evaluation of results obtained at various Venezuelan ecosystems is made. CH4 fluxes from the soil-grass system in savanna ecosystems indicate that grasses produce CH4 at ~10ng·m-2·s-1. Furthermore, CH4 accumulation within the nocturnal mixing layer at the Guri site, which is affected by savanna and forest emissions, was used to make a rough upper limit estimation of <70ng·m-2·s-1 for CH4 emission from forest vegetation. These estimates are likely to be somewhat low as they do not take into account the light-induced production of CH4 by the vegetation. Global extrapolation of these fluxes indicates that, ignoring the possible stimulating effects of solar radiation, savanna and forest vegetation result in CH4 emissions of ~5Tg·yr-1 and <22Tg·yr-1, respectively. These estimates are in agreement with the lower estimates based on laboratory CH4 flux measurements, reported in the literature. On the other hand, the global extrapolation of the atmosphere-soil uptake fluxes results CH4 sinks of ~1.3Tg·yr-1 in savannas and of 3.3Tg·yr-1 in forests. In conclusion, Venezuelan field measurements support the discovery that vegetation emits CH4. However, global extrapolation indicates that tropical vegetation would contribute modestly to global methane emission, which, additionally, is offset in part by savanna and forest CH4 soil uptake. Most likely, carbon sequestration benefits from forestation should not be significantly affected by CH4 emissions by trees.

          Translated abstract

          Recentemente, um surpreendente descobrimento mostrou que, por um processo não estabelecido, a vegetação emite metano. Isto poderia ter serias implicações em química atmosférica, o clima, e as atividades de mitigação da mudança global. Para avaliar a magnitude da vegetação tropical como fonte de CH4, se reavaliam os resultados obtidos em vários ecossistemas venezuelanos. Os fluxos para a atmosfera desde o sistema solo-pasto na savana indicam que os pastos produzem CH4 a uma velocidade de ~10ng·m-2·s-1. Além disso, a acumulação de CH4 dentro da capa de mistura noturna em Guri, lugar afetado pelas emissões dos ecossistemas de savana e bosque, permite fazer uma primeira estimação do limite superior da emissão de CH4 da vegetação de bosque <70ng·m-2·s-1. Estes valores poderiam estar subestimados pois não incluem o efeito da radiação solar sobre a produção de CH4 pela vegetação. Ignorando o possível efeito da radiação solar, a extrapolação global destes fluxos produzem uma emissão de CH4 de ~5Tg·ano-1 e <22Tg·ano-1, para a vegetação de savana e bosque, respectivamente, valores que concordam com estimações mais baixas relatadas na literatura, baseadas em medições de fluxos em laboratório. Por outra parte, a extrapolação global do consumo de CH4 pelos solos produz um sumidouro de ~1,3Tg·ano-1 para savanas e 3,3Tg·ano-1 para bosques. Em conclusão, medições de campo na Venezuela apóiam o descobrimento de que a vegetação emite metano. No entanto, a extrapolação global indica que a vegetação tropical faria uma modesta contribuição à emissão global, a qual adicionalmente seria compensada pelo consumo de CH4 nos solos. Os benefícios do seqüestro de carbono por florestação não seriam significativamente afetados com a emissão de CH4 pelas árvores.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methane emissions from terrestrial plants under aerobic conditions.

            Methane is an important greenhouse gas and its atmospheric concentration has almost tripled since pre-industrial times. It plays a central role in atmospheric oxidation chemistry and affects stratospheric ozone and water vapour levels. Most of the methane from natural sources in Earth's atmosphere is thought to originate from biological processes in anoxic environments. Here we demonstrate using stable carbon isotopes that methane is readily formed in situ in terrestrial plants under oxic conditions by a hitherto unrecognized process. Significant methane emissions from both intact plants and detached leaves were observed during incubation experiments in the laboratory and in the field. If our measurements are typical for short-lived biomass and scaled on a global basis, we estimate a methane source strength of 62-236 Tg yr(-1) for living plants and 1-7 Tg yr(-1) for plant litter (1 Tg = 10(12) g). We suggest that this newly identified source may have important implications for the global methane budget and may call for a reconsideration of the role of natural methane sources in past climate change.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO).

              R Conrad (1996)
              Production and consumption processes in soils contribute to the global cycles of many trace gases (CH4, CO, OCS, H2, N2O, and NO) that are relevant for atmospheric chemistry and climate. Soil microbial processes contribute substantially to the budgets of atmospheric trace gases. The flux of trace gases between soil and atmosphere is usually the result of simultaneously operating production and consumption processes in soil: The relevant processes are not yet proven with absolute certainty, but the following are likely for trace gas consumption: H2 oxidation by abiontic soil enzymes; CO cooxidation by the ammonium monooxygenase of nitrifying bacteria; CH4 oxidation by unknown methanotrophic bacteria that utilize CH4 for growth; OCS hydrolysis by bacteria containing carbonic anhydrase; N2O reduction to N2 by denitrifying bacteria; NO consumption by either reduction to N2O in denitrifiers or oxidation to nitrate in heterotrophic bacteria. Wetland soils, in contrast to upland soils are generally anoxic and thus support the production of trace gases (H2, CO, CH4, N2O, and NO) by anaerobic bacteria such as fermenters, methanogens, acetogens, sulfate reducers, and denitrifiers. Methane is the dominant gaseous product of anaerobic degradation of organic matter and is released into the atmosphere, whereas the other trace gases are only intermediates, which are mostly cycled within the anoxic habitat. A significant percentage of the produced methane is oxidized by methanotrophic bacteria at anoxic-oxic interfaces such as the soil surface and the root surface of aquatic plants that serve as conduits for O2 transport into and CH4 transport out of the wetland soils. The dominant production processes in upland soils are different from those in wetland soils and include H2 production by biological N2 fixation, CO production by chemical decomposition of soil organic matter, and NO and N2O production by nitrification and denitrification. The processes responsible for CH4 production in upland soils are completely unclear, as are the OCS production processes in general. A problem for future research is the attribution of trace gas metabolic processes not only to functional groups of microorganisms but also to particular taxa. Thus, it is completely unclear how important microbial diversity is for the control of trace gas flux at the ecosystem level. However, different microbial communities may be part of the reason for differences in trace gas metabolism, e.g., effects of nitrogen fertilizers on CH4 uptake by soil; decrease of CH4 production with decreasing temperature; or different rates and modes of NO and N2O production in different soils and under different conditions.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Journal
                inci
                Interciencia
                INCI
                ASOCIACIÓN INTERCIENCIA (Caracas )
                0378-1844
                January 2007
                : 32
                : 1
                : 30-34
                Affiliations
                [1 ] Instituto Venezolano de Investigaciones Científicas (IVIC) Venezuela
                Article
                S0378-18442007000100007
                5b54dbe8-153c-486f-9b7b-c1d08dab7c65

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Venezuela

                Self URI (journal page): http://www.scielo.org.ve/scielo.php?script=sci_serial&pid=0378-1844&lng=en
                Categories
                ECOLOGY

                Ecology
                Global Methane Budget,Methane from Vegetation,Methane in Tropical Ecosystems
                Ecology
                Global Methane Budget, Methane from Vegetation, Methane in Tropical Ecosystems

                Comments

                Comment on this article