33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inter-trabecular bone formation: a specific mechanism for healing of cancellous bone : A narrative review

      research-article
      ,
      Acta Orthopaedica
      Taylor & Francis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and purpose

          Studies of fracture healing have mainly dealt with shaft fractures, both experimentally and clinically. In contrast, most patients have metaphyseal fractures. There is an increasing awareness that metaphyseal fractures heal partly through mechanisms specific to cancellous bone. Several new models for the study of cancellous bone healing have recently been presented. This review summarizes our current knowledge of cancellous fracture healing.

          Methods

          We performed a review of the literature after doing a systematic literature search.

          Results

          Cancellous bone appears to heal mainly via direct, membranous bone formation that occurs freely in the marrow, probably mostly arising from local stem cells. This mechanism appears to be specific for cancellous bone, and could be named inter-trabecular bone formation. This kind of bone formation is spatially restricted and does not extend more than a few mm outside the injured region. Usually no cartilage is seen, although external callus and cartilage formation can be induced in meta­physeal fractures by mechanical instability. Inter-trabecular bone formation seems to be less sensitive to anti-inflammatory treatment than shaft fractures.

          Interpretation

          The unique characteristics of inter-trabecular bone formation in metaphyseal fractures can lead to differences from shaft healing regarding the effects of age, loading, or drug treatment. This casts doubt on generalizations about fracture healing based solely on shaft fracture models.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Skeletal Cell Fate Decisions Within Periosteum and Bone Marrow During Bone Regeneration

          Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model.

            Bone-lining tissues contain a population of resident macrophages termed osteomacs that interact with osteoblasts in vivo and control mineralization in vitro. The role of osteomacs in bone repair was investigated using a mouse tibial bone injury model that heals primarily through intramembranous ossification and progresses through all major phases of stabilized fracture repair. Immunohistochemical studies revealed that at least two macrophage populations, F4/80(+) Mac-2(-/low) TRACP(-) osteomacs and F4/80(+) Mac-2(hi) TRACP(-) inflammatory macrophages, were present within the bone injury site and persisted throughout the healing time course. In vivo depletion of osteomacs/macrophages (either using the Mafia transgenic mouse model or clodronate liposome delivery) or osteoclasts (recombinant osteoprotegerin treatment) established that osteomacs were required for deposition of collagen type 1(+) (CT1(+)) matrix and bone mineralization in the tibial injury model, as assessed by quantitative immunohistology and micro-computed tomography. Conversely, administration of the macrophage growth factor colony-stimulating factor 1 (CSF-1) increased the number of osteomacs/macrophages at the injury site significantly with a concurrent increase in new CT1(+) matrix deposition and enhanced mineralization. This study establishes osteomacs as participants in intramembranous bone healing and as targets for primary anabolic bone therapies. Copyright © 2011 American Society for Bone and Mineral Research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures.

              Animal experiments show a dramatic improvement in skeletal repair by teriparatide. We tested the hypothesis that recombinant teriparatide, at the 20 microg dose normally used for osteoporosis treatment or higher, would accelerate fracture repair in humans. Postmenopausal women (45 to 85 years of age) who had sustained a dorsally angulated distal radial fracture in need of closed reduction but no surgery were randomly assigned to 8 weeks of once-daily injections of placebo (n = 34) or teriparatide 20 microg (n = 34) or teriparatide 40 microg (n = 34) within 10 days of fracture. Hypotheses were tested sequentially, beginning with the teriparatide 40 microg versus placebo comparison, using a gatekeeping strategy. The estimated median time from fracture to first radiographic evidence of complete cortical bridging in three of four cortices was 9.1, 7.4, and 8.8 weeks for placebo and teriparatide 20 microg and 40 microg, respectively (overall p = .015). There was no significant difference between the teriparatide 40 microg versus placebo groups (p = .523). In post hoc analyses, there was no significant difference between teriparatide 40 microg versus 20 microg (p = .053); however, the time to healing was shorter in teriparatide 20 microg than placebo (p = .006). The primary hypothesis that teriparatide 40 microg would shorten the time to cortical bridging was not supported. The shortened time to healing for teriparatide 20 microg compared with placebo still may suggest that fracture repair can be accelerated by teriparatide, but this result should be interpreted with caution and warrants further study. Copyright 2010 American Society for Bone and Mineral Research.
                Bookmark

                Author and article information

                Journal
                Acta Orthop
                Acta Orthop
                IORT
                Acta Orthopaedica
                Taylor & Francis
                1745-3674
                1745-3682
                October 2016
                29 June 2016
                : 87
                : 5
                : 459-465
                Affiliations
                Orthopedics, Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
                Author notes
                Article
                iort-87-459
                10.1080/17453674.2016.1205172
                5016903
                27357416
                5aebdd26-bdd7-4371-ad9b-34a899119bf8
                © 2016 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( https://creativecommons.org/licenses/by-nc/3.0)

                History
                : 18 February 2016
                : 30 May 2016
                Categories
                Articles

                Orthopedics
                Orthopedics

                Comments

                Comment on this article